
Deep Local Trajectory Replanning and Control for Robot Navigation

Ashwini Pokle1, Roberto Martı́n-Martı́n1, Patrick Goebel1, Vincent Chow1, Hans M. Ewald1,
Junwei Yang1, Zhenkai Wang1, Amir Sadeghian1, Dorsa Sadigh1, Silvio Savarese1, Marynel Vázquez2

Abstract— We present a navigation system that combines
ideas from hierarchical planning and machine learning. The
system uses a traditional global planner to compute optimal
paths towards a goal, and a deep local trajectory planner
and velocity controller to compute motion commands. The
latter components of the system adjust the behavior of the
robot through attention mechanisms such that it moves towards
the goal, avoids obstacles, and respects the space of nearby
pedestrians. Both the structure of the proposed deep models and
the use of attention mechanisms make the system’s execution
interpretable. Our simulation experiments suggest that the pro-
posed architecture outperforms baselines that try to map global
plan information and sensor data directly to velocity commands.
In comparison to a hand-designed traditional navigation system,
the proposed approach showed more consistent performance.

I. INTRODUCTION

Autonomous robot navigation in known environments en-
compasses two main problems: 1) finding a safe path for
a robot to reach a desired goal location, and 2) following
the path while adapting to environmental conditions [1].
While global planners can efficiently find optimal motion
paths [2], translating these paths into robot commands –
which is traditionally the job of a reactive controller – can be
challenging. Reactive controllers not only need to take into
account kinodynamic constraints [3], but also consider plan
execution and adaptation to the environment, e.g., to avoid
obstacles [4] and respect social conventions [5] (Fig. 1).

At the core of classical approaches to reactive control
is a hand-designed objective function that must balance
navigation criteria to output motion commands [3, 6, 7].
While successful in simple situations, these approaches can
be difficult to tune for dynamic human environments. One
reason is that relevant criteria, like social norms, are hard
to define mathematically. Even when models exist, complex
interactions may emerge between model parameters and the
resulting navigation behavior [7]. Some navigation criteria
may even be contradictory at times, e.g., reaching a goal in
a crowded environment without violating personal space.

In this work, we combine ideas from machine learning
[8, 9, 10, 11, 12] and hierarchical planning [13] to improve
reactive robot control. Our approach does not require hand-
specifying all the parameters of the reactive controller;
instead, most parameters are optimized based on example
navigation data through imitation learning [14, 15, 8]. Similar
to [11], we assume that localization information is available
during robot operation, and focus on studying mechanisms to
combine high-level planning and learning for low-level mo-
tion control. In contrast to [11], though, we use learning not
only for controlling robot velocities, but also for predicting a

1 Stanford University. 2 Yale University.

Fig. 1: Navigation scenario. The (solid) robot needs to reach the
back of the foyer. The global planner provides an optimal solution
(light green) based on a static environment map. Our navigation
approach re-plans locally to adapt to the dynamic environment and
control the robot towards the goal (translucent robots).

local motion plan, which guides the velocities output by our
approach. Our main insight is that by adding structure to the
learning component of our system we can guide the learning
process to find an appropriate complex mapping from the
high-level plan to motion commands, without incurring in
additional annotation costs. As suggested by our experi-
mental evaluation, the added structure can improve overall
navigation behavior in comparison to mapping a goal or a
global plan directly to commands [10, 11]. Predicting a local
plan also facilitates system interpretability upon execution.

The proposed local trajectory planner and velocity con-
troller of our approach adjust the behavior of the robot
through simple, deep attention mechanisms. These mecha-
nisms enable the robot to dynamically focus on different
tasks: obstacle avoidance, social interaction, or following
navigation plans. As a result, the robot is able to account
for changing elements in the environment. It behaves in a
manner that resembles complex rules that govern human use
of space [16, 17].

In summary, this work has several main contributions.
First, we introduce a new system for autonomous navigation
which combines planning and learning. The system’s learn-
ing component predicts a local plan and motion commands.
Second, we propose an attention mechanism for multimodal
data fusion. Finally, we conduct controlled experiments on a
simulated platform to evaluate the proposed system.

II. RELATED WORK

Autonomous navigation has long been studied within
robotics. Early navigation methods focused on path planning
[18], while more recent approaches tend to leverage machine
learning to make navigation systems less brittle to new
environmental conditions [19, 20]. In some cases, machine
learning is used to create systems that improve as they
explore more of the environment, e.g., with reinforcement
learning [21] or via knowledge transfer in lifelong learning

ar
X

iv
:1

90
5.

05
27

9v
1

 [
cs

.R
O

]
 1

3
M

ay
 2

01
9

settings [22]. In other cases, machine learning is used to
model preferences for the navigation task with the help of a
teacher [23]. For instance, prior approaches have used struc-
tured prediction [24] or inverse reinforcement learning [25]
to find cost functions that encode preferences for navigating
through parts of an environment. Closer to our work, some
methods have focused on directly learning motion policies
with imitation learning, e.g., [14, 15, 8]. As discussed in
[26], directly mapping states to actions can be more efficient
than learning a cost function for imitation. Due to limited
space, we encourage readers interested in more details of
these different approaches to refer to [18, 20, 21, 23, 27].

Similar to [8, 9, 10, 12], we use deep learning [28] to
parameterize a motion policy. This approach allows us to
forgo hand-engineered features for sensor data. In contrast
to most of these efforts, though, we do not aim to solve
the whole navigation problem with a single function trained
in an end-to-end fashion. Instead, we leverage planning in
conjunction with deep learning for autonomous navigation.

Inspired by IntentionNet [11], we use a global planner to
solve for the general direction that a robot should follow
to reach a desired destination in a known environment, as
well as use deep learning for motion control. But different
to [11], (1) our approach explicitly considers the presence
of people nearby the robot, (2) processes raw lidar measure-
ments instead of RGB images, (3) represents global plans
via trajectories, and (4) enforces additional structure on the
learning component of the navigation system. Our rationale
behind these considerations are as follows. First, providing
information about people’s motion directly to our navigation
system facilitates interactions in human environments. Sec-
ond, providing raw lidar measurements to our system reduces
the complexity of the input space and facilitates system
development through simulation in comparison to using raw
images. Lidar can also help with obstacle avoidance, as in
[10], because it measures depth directly and typically has a
wider field of view than cameras. Third, representing global
plans via trajectories, instead of rendering them on maps,
reduces even further the dimensionality of the input space.
Fourth, adding structure to the learning component of our
navigation system offers an opportunity to add supervision
and facilitate interpretability. Our approach does not aim to
build an environment map as the robot navigates [29], but
assumes that a map is given for high-level, global planning.

The study of how people use and share space, or proxemics
[16], is relevant for social robot navigation, e.g., see [30] for
a recent review. Generally, most methods for social navi-
gation explicitly model interactions among agents or social
conventions [5, 31, 7, 32, 33, 34, 35, 36, 37, 38, 39]. Other
methods, like ours, implicitly model these aspects and let
navigation strategies emerge through imitation [11, 40, 41].

We leverage simulations to facilitate training motion poli-
cies and conduct system evaluations. Similar to work by Tai
et al. [41] and Müller et al. [42], we avoid providing complex
sensory input, like images, to our method. Instead, our deep
model takes as input lidar and information derived from
complex signals, like people’s position nearby the robot.

III. APPROACH

Building on a long tradition in robotics [43, 44, 45, 46, 11],
we use a hierarchical approach for locomotion. Our particular
hierarchy is composed of three levels: Global Planning, Local
Planning, and Velocity Control. As shown in Fig. 2, the
Global Planner takes as input a 2D map of the environment
with static obstacles, e.g., walls, the current location of
the robot, and the coordinates of a desired destination (or
goal) in the map. Based on these inputs, the global planner
computes a path in the map for the robot to reach the
desired goal location. The Local Planner then focuses on
a shorter time horizon: what are the immediate navigation
steps that the robot should take to follow the global plan in an
acceptable manner given observed environmental conditions?
These conditions include dynamic elements, such as people,
as well as static obstacles sensed in the vicinity of the robot.
Finally, the Velocity Controller commands motions to the
robot based on the navigation plans.

Explicitly or manually defining socially appropriate nav-
igation behavior is hard. Human behavior is malleable and
social norms often change from one social context to another
[16, 17]. Thus, we resort to imitation learning to model
appropriate behavior. Our main assumption in this work
is that expert demonstrations are available to learn what
constitutes good navigation patterns for a robot.

We implement the Local Planner and the Velocity Con-
troller of our navigation approach as Neural Networks and
optimize their parameters based on expert motion data. While
it would have been possible to also implement the Global
Planner as a differentiable function [47] and optimize for
the whole system in a complete end-to-end fashion, we opt
for combining machine learning with traditional planning
in this work. This combination aims to take advantage of
the benefits of both approaches, while keeping the imple-
mentation of our system practical. We use planning because
it is fast and reliable for computing obstacle-free routes
in static environments, and we use deep networks because
they have a great capacity for reasoning about raw sensor
data and modeling complex phenomena like social behavior
[48, 49]. Note that the learning component of our hierarchical
navigation approach has more structure than similar prior
work [10, 11]. We use a differentiable Local Planner to
provide additional supervision to the learning component of
our system and facilitate interpreting its execution.

A. Global Planning: Finding a Route to the Goal

As a first step when navigation starts, our system computes
a collision free path from the initial location of the robot x0

to the desired goal location g in a static map of the envi-
ronment. The path is computed with Dijkstra’s shortest path
algorithm [50] and saved as a reference during navigation.

The Global Planner of our system provides a down-
sampled version of the full global plan to the Local Planner.
Down-sampling preserves the desired motion direction and
highlights the relevant part of the global plan for successive
processing. Let the output of the Global Planner be a down-
sampled path G = {(xi, yi) | 1 ≤ i ≤ 10}, with each (xi, yi)

Residual
network

Lidar

Dense
layers

Feature
fusion with
attention

Dense
layers (Local plan)

fr

fh
Lfc

Human
trajectories

PointNet

fg

Feature
fusion with
attention

Dense
layers

Dense
layers

fl
v,!

(Commands)

Velocity ControllerLocal Planner

fv

Map

Current
location

Destination

Global Planner

G
(Global plan)

Shortest path
planner

Odometry
Dense
layers

fo

Fig. 2: Proposed approach. The white boxes denote inputs to our system. The purple box, blue boxes, and gray boxes belong
to the global planner, the local planner, and the velocity controller, respectively. See the text for more details.

a waypoint belonging to the original full plan. We enforce
that the first waypoint (x1, y1) in G is the closest waypoint
in the full plan to the current location of the robot, and
that the remaining waypoints are at least 0.5 meters from
the previous one in G. If not enough waypoints that satisfy
these constraints remain in the full plan, then the goal is used
instead.

B. Local Planning: Predicting Navigation Subgoals

Let the inputs to the local planner be the down-sampled
global plan G, the lidar range measurements R = {ri | 1 ≤
i ≤M}, the robot’s linear and angular velocities O = (v̂, ω̂)
from odometry, and a set of observed human trajectories
H = {Ti | 1 ≤ i ≤ P} with Ti = {(xj , yj) | t − k ≤ j ≤ t}
the 2D coordinates of person i for the last k time-steps
relative to the current pose of the robot. Features for these
inputs are computed by:
Global Plan Features. The model flattens G into g ∈ R20,
and projects g into a higher dimensional space through
two fully connected ReLU layers with 32 and 512 units,
respectively. The result is a feature vector fg ∈ R512.
Lidar Features. The model uses the residual network from
[10] to compute the lidar features fr ∈ R512. The residual
network is composed of 5 convolutional layers and two
residual connections. See Fig. 2 in [10] for more details.
Odometry Features. The models projects O into a higher
dimensional space through two fully connected ReLU layers,
similar to the Global Plan features. The result is a feature
vector fo ∈ R512.
Human Trajectory Features. In the spirit of [51], our
model uses a PointNet network [52] to compute features for
a set of past human trajectories. This choice frees us from
needing to specify an order in which human coordinates
should be input to our model. More specifically, the local
planner organizes observed human trajectories H into a
matrix H ′ ∈ RP×2k, where each row corresponds to the
data of one person. The rows are independently projected
into a higher dimensional space of 1024 dimensions through
a three layer perceptron with ReLU activations. The resulting
matrix in RP×1024 is then applied a max pooling operation
and flattened to convert it into a vector in R1024 that encodes
information about the motion of the people nearby the robot.
This data is finally transformed by a fully connected layer
with ReLU activation into the feature vector fh ∈ R512,
which has the same dimensionality as the other features.

In initial experiments, we considered combining the above
features through concatenation [36, 11] or outer product
operations [53, 54]. We found, however, that it was hard for
the robot to pay attention to multiple sources of information
with concatenation. For example, the robot would follow
the global plan and ignore obstacles observed through its
lidar in some cases. We also found that, as in [53], the
outer product led to very high-dimensional features that made
training prohibitively expensive or prone to over-fitting.
Fusion of Input Features. Inspired by prior work in text
translation [55], we propose to fuse input features with a
simple concatenation-based attention mechanism:

fc = [agfg arfr ahfh aofo] (1)

with a = [ag ar ah ao]
T coefficients that reflect the

relative importance of the features. We compute the attention
coefficients a by first concatenating the input features and
transforming them into a higher dimensional space, u =
max(0,W1concat(fg, fr, fh, fo)) with W1 ∈ R128×2048 a
parameter matrix. Then, the desired coefficients are given by
a = softmax(W2u) with W2 ∈ R4×128 trainable parameters.

The Local Planner finally generates a plan L by trans-
forming the combined features fc through 3 fully connected
layers with 512, 256 and 64 units and ReLU activations, and
one final linear transformation. The plan is an ordered set of
poses L = {(xi, yi, cos(θi), sin(θi)) | 1 ≤ i ≤ 5} sampled at
1Hz that represent a time-dependent trajectory that the robot
could follow to adapt to the dynamic environment within
the next 5 seconds. L guides the robot in the direction of
the global plan, and encodes temporal information to enable
variations in speed as necessary while navigating.

C. Velocity Control: Predicting Low-Level Commands

We provide the Velocity Controller three inputs: L, the
lidar features fr, and the global plan features fg computed
during local planning. While L might suffice in cases where
the prediction of the local plan is appropriate for the current
environmental conditions, there might be cases when L is
problematic, e.g., bringing the robot close to collision due
to a prediction error, or getting the robot stuck due to local
minima. In these cases, range information and the global
plan can help the robot avoid obstacles in close proximity
and navigate towards the goal.

The Velocity Controller first computes features for the
local plan L by projecting it to a higher dimensional space

through two fully connected ReLU layers with 32 and 512
units, respectively. The result are local plan features fl ∈
R512 with the same dimensionality of features fr and fg .

The Controller combines features with attention, as in eq.
(1), except that only three attention coefficients are needed
in this case. Let these coefficients be denoted by bl, br, bg .
Then, the combined features fv = [blfl brfr bgfg].

Finally, the Velocity Controller projects the combined
features fv to a 2D space through 2 fully connected ReLU
layers with 512 and 128 units, followed by a fully connected
ReLU layer and a linear activation function. The two outputs
are the linear velocity (v) and angular velocity (ω) that
command the robot to move as desired, as shown in Fig. 2.

D. Learning a Local Planner and Velocity Controller

The joint network of the Local Planner and the Velocity
Controller can be seen as a policy that maps states into
actions based on examples from an expert. The state is
composed of the inputs to the Local Planner; the actions
are the low-level, velocity commands that are output by our
navigation system. Under this formulation, our objective is
to compute a policy π̂ that minimizes the expected loss `
with respect to the expert policy π∗ under the distribution of
states s ∼ dπ∗ induced by the expert:

π̂ = argmin
π∈Π

Es∼dπ∗ [`(s, π)] (2)

This particular view of the imitation problem follows close
related work [10, 11] and is typically known as Behavioral
Cloning [14, 8, 40].1 Our main assumption is that expert
motion trajectories are available for supervised learning.

We learn the parameters of the Neural Networks of our
system through back-propagation with three Adam optimiza-
tion procedures [59] aimed at providing an easier path to
learning, similar to curriculum learning [60] or shaping [61].
Unless otherwise noted, we use L2 loss with a batch size of
300 samples. We pick the best parameters after 100 epochs.
Training Procedure. First, we compute lidar features fr with
the help of the navigation model proposed by Pfeiffer et al.
[10]. We train their model by minimizing the loss on robot
velocity. We then load the pre-trained weights for fr into the
Residual Network of our Local Planner (Fig. 2) and optimize
for the rest of this component. Our insight is that we can
use expert motion trajectories to supervise the Local Planner
without collecting additional data. Our ground truth for the
local plan L at a given time-step t is the pose of the robot
at t+1s, t+2s, etc., in the future, which is readily available
after collecting expert trajectories. Finally, we load the Local
Planner into a network with all of the learning components
of our navigation system, and train the Velocity Controller.

IV. EXPERIMENTAL SETUP

Experimental Platform. We use a simulated JackRabbot 2
robot for data collection and evaluation. The robot is a

1It is possible to frame the objective as finding a policy that minimizes
the loss ` under its distribution of states s ∼ dπ [56]. Even though this
is computationally more expensive, prior work suggests that it can improve
imitation [57, 58]. This alternative formulation is interesting future work.

TABLE I: Configuration of simulation environments. “G” denotes
Geometric obstacles, “SP” is Static People, and “MP” is Moving
Pedestrians. “# Train ” indicates the number of scenarios from the
corresponding env. configuration that were used for training models.
“# Test” indicates the number of (new) scenarios used for testing.

Env. Map # G # SP # MP # Train # Test
E1 Foyer 8 0 0 42 0
E2 Foyer 12 0 0 17 0
E3 Foyer 6 3 2 23 0
E4 Foyer 3 2 3 1364 100
E5 Foyer 1 1 1 0 100
E6 Foyer 8 3 3 0 50
E7 Lab. 8 3 3 0 50

differential-drive mobile manipulator with a forward-facing
2D SICK lidar and an Occam 360◦ stereo camera, among
other sensors. JackRabbot’s software stack uses the Robot
Operating System (ROS) [62] for inter-process commu-
nication and logging, OpenSlam’s Gmapping for creating
environment maps [63], ROS’s Adaptive Monte Carlo Lo-
calization algorithm for pose estimation [64], and YOLO
[65] and DeepSort [66] for visually detecting and tracking
pedestrians all around. Pedestrian tracks are converted from
2D to 3D with calibrated cameras and lidars.

Simulation Environments. We use the Gazebo simulator
for our experiments. To test navigation algorithms on the
simulated robot, we use the robot’s true pose from Gazebo
instead of its localization algorithm, the true pedestrian
motion relative to the robot instead of its vision pipeline,
and a simulated forward-facing lidar. These changes allowed
us to systematically study robot behavior without potential
confounds due to perception errors.
To evaluate navigation in varied scenarios, we added ob-
stacles to the simulation, e.g., 0.5-0.75 m3 boxes and cylin-
ders, and implemented a Social Forces model [67] for the
pedestrians in Gazebo. The Social Forces model enables each
pedestrian to adapt their path to reach navigation sub-goals.
Overall, we consider 7 different environmental conditions in
our experiments (Table I). Six conditions (E1-E6) use the
same map of the foyer of a university building, which is
depicted in Fig. 1. The other condition uses the map of a
laboratory environment. We use four different environmental
conditions for training or tuning parameters (E1-E4) and
four for testing (E4-E7). In particular, we use E5 and E6
for testing generalization to new environmental conditions
in a known map, and E7 for testing generalization to a new
environment. Each scenario indicated under the “# Train”
and “# Test” columns of Table I corresponds to a different
pair of start-end locations for the robot, and navigation sub-
goals for the pedestrians. The scenarios used for testing in E4
are different than those used for training or tuning methods.

Data Collection. We collect a dataset of 1446 expert motion
trajectories – each corresponding to a different scenario –
for the robot with Gazebo. The robot was tele-operated
with a gamepad controller for 600 scenarios in E1-E4. The
remaining 764 expert motion trajectories were selected from
a set of runs of the ROS’ Navigation Stack with social costs
enabled [68] in E4, as tele-operation is time consuming and

http://www.ros.org
http://www.ros.org
http://gazebosim.org/

deep learning benefits from big amounts of data. We tried
various approaches for combining tele-operated and auto-
generated data, e.g., transfer learning, but found that using all
of it for training at once led to best performance in general.

Baselines. We compare our system with three baselines:
- Nav. Stack. ROS’ layered Navigation Stack with social
costs [68], Dijkstra’s algorithm for global planning, and an
Elastic Band local controller [69].
- Goal Controller (GC). Deep controller that maps lidar
range measurements and a 2D navigation sub-goal to velocity
commands [10]. The sub-goal moves along the global plan.
It is generally 2 m ahead of the robot until JackRabbot
approaches the destination and the sub-goal becomes the
goal. Input features are fused with concatenation as in [10].
- Trajectory Controller (TC). Deep controller that maps lidar
measurements and the down-sampled global plan G to veloc-
ity commands. This model is based on [11] but takes lower-
dimensional inputs, which facilitates learning. Input features
are combined with concatenation as in [11].
The GC and TC baselines can be considered ablation models
of the proposed deep local trajectory planner and velocity
controller. These baselines use the same lidar features fr and
global plan features fg as the proposed system.

Objective Metrics. For a given set of test scenarios, we
consider the following metrics:
- Running Time. Total running time for all the scenarios.
- Distance. Total distance that the robot traversed considering
all the scenarios.
- Linear Vel. Average linear velocity that the robot reported
considering all the scenarios.
- Reached Goal (RG). Percentage of the scenarios in which
the robot reached the goal.
- Failure (F). Percentage of the scenarios in which the robot
failed catastrophically and tipped over, e.g., after a collision.
- Collisions or Near Collisions (C). Number of events in
which the robot’s lidar sensed an obstacle closer than 0.3 m.
The count considers all scenarios; it is not averaged.
- Pedestrian Collisions (PC). Number of events in which the
robot collided with a pedestrian (their distance was less than
0.5 m). The count considers all scenarios.
- Violations of Personal Space (PS). Number of events in
which the robot violated personal space [16] and was less
than 1.2 m from a person. The count considers all scenarios.

Subjective Metrics. We conduct a survey to gather qual-
itative perceptions of navigation performance. Participants
rate navigation behavior on three 5-point Likert scales:
Aggressive, Natural, and Efficient navigation.

Other Details. We consider that the robot reached the goal
if its distance to the destination is less than 0.5 m. For all
the scenarios, we limit the time that the robot can take to
reach the destination to 1.5 min. Finally, the robot has a safe,
maximum limit of 0.6 m/s and 1.2 rad/s on its absolute linear
and angular speeds.

V. EXPERIMENTAL EVALUATION

A. Evaluation Based on Objective Metrics

Experiments in Previously-Seen Maps. We first conducted
an evaluation on the Foyer map, which was used for training
or tuning of algorithms, to evaluate the capacity of the
models on a previously-seen environmental condition (E4)
and in new conditions (E5 and E6). As indicated in Table
I, we considered 100 test scenarios according to each of E4
and E5, and 50 test scenarios according to E6.
Table II presents quantitative results for this experiment.
Overall, all methods increased speed as the environments
were simpler, suggesting that they adjusted navigation be-
havior based on environmental conditions. Unfortunately,
though, collisions were observed throughout the experiment.
In terms of relative performance on the familiar condition
E4, the proposed approach reached the goal the most. For
new environmental conditions, the Navigation Stack was the
best model in the simplest condition (E5), while the proposed
approach was the best model in the more complex condition
(E6). In E5, the performance of our system is worse than in
the other two environments. We observed that in simulation,
our model paid too much attention to the single pedestrian,
and halted multiple times to let the pedestrian pass and
as a result, could not reach the goal within 90 seconds.
Remarkably, the performance of our approach varied only
by ±3% when reaching the goal in the foyer, while the
performance of the Nav. Stack varied by about ±8%. It is
difficult to manually find a fixed set of model parameters for
all environmental conditions.
The GC and TC baselines showed their best performance
in the simple condition E5, even in comparison to E4. This
result suggests that the controllers were able to follow the
global plan, but had trouble adapting to dynamic environ-
ments, which were more common in E4 and E6.

Generalization to a New Map. We tested generalization
capabilities in a new map of a university laboratory (envi-
ronmental condition E7). The results are presented in the
last four rows of Table II. Our proposed model reached
the goal the most often, followed by the navigation stack.
There is a marked difference in the goal reach percentages
of the proposed system and the navigation stack. This result
again highlights the difficulty in manually tuning static model
parameters for navigation with ROS’ navigation stack.

B. Evaluation Based on Subjective Metrics

We surveyed 35 people through Amazon Mechanical Turk
in regards to their perception of the motion of the robot in
48 videos of scenarios from environmental conditions E4,
E5, E6, and E7 (Table I). We then ran REstricted Maxi-
mum Likelihood (REML) [70] analyses on how Aggressive,
Natural, and Efficient the motion looked with Method (Nav.
Stack, GC, TC, Proposed) as main effect and participant as
random effect. The results for Efficiency were significant,
F[3, 1642] = 19.26, p< 0.01. A Tukey post-hoc test [71]
showed that the proposed navigation approach was perceived
as significantly more efficient (M=3.69, SE=0.06) than the

TABLE II: Objective results. ↑: higher is better; ↓: lower is better. Please see Sec. IV and V for more details.

Model Env. Running Time Distance Linear Vel. RG ↑ F ↓ C↓ PC↓ PS ↓
Nav. Stack E4 60.1 min 802.7 m 0.22 m/s 91% 0/100 64 1 82

Goal Cont. (GC) E4 55.4 min 901.9 m 0.27 m/s 89% 2/100 167 12 108
Traj. Cont. (TC) E4 49.8 min 993 m 0.33 m/s 85% 7/100 129 7 112
Proposed System E4 54.2 min 923.3 m 0.28 m/s 95% 0/100 102 1 76

Nav. Stack E5 56.8 min 892.2 m 0.26 m/s 98% 0/100 0 1 28
Goal Cont. (GC) E5 46.4 min 930.2 m 0.33 m/s 98% 0/100 52 1 27
Traj. Cont. (TC) E5 45.3 min 961.5 m 0.35 m/s 97% 1/100 61 0 43
Proposed System E5 59.6 min 941.7 m 0.26 m/s 93% 0/100 27 1 34

Nav. Stack E6 38.7 min 424.8 m 0.18 m/s 82% 0/50 67 0 80
Goal Cont. (GC) E6 34.0 min 333.0 m 0.16 m/s 74% 1/50 178 1 65
Traj. Cont. (TC) E6 39.4 min 472.2 m 0.2 m/s 66% 1/50 152 4 65
Proposed System E6 34.4 min 484.4 m 0.23 m/s 98% 0/50 112 1 62

Nav. Stack E7 25.2 min 276.26 m 0.18 m/s 66% 0/50 12 0 17
Goal Cont. (GC) E7 45.9 min 540.01 m 0.19 m/s 62% 0/50 21 2 28
Traj. Cont. (TC) E7 46.2 min 416.81 m 0.15 m/s 64% 1/50 18 1 28
Proposed System E7 39.4 min 503.95 m 0.21 m/s 84% 0/50 16 0 35

Nav. Stack and TC (M=3.46, SE=0.07; M=3.05, SE=0.07).
The results for Aggressiveness and Naturalness were signif-
icant as well with p< 0.01. The post-hoc showed that the
TC baseline led to the most aggressive (M=2.7, SE=0.06)
and least natural (M=3.14, SE=0.06) navigation behavior in
comparison to all other methods. In particular, the ratings
for our approach in terms of aggressiveness and naturalness
were M=2.30, SE=0.06, and M=3.62, SE=0.06, respectively.

C. Attention Visualization

We inspected the attention coefficients from the learned
components of the proposed navigation system and found
that they correlate consistently with specific task conditions,
providing a mechanism to interpret the execution of the
model. For instance, as the robot navigated nearby obsta-
cles, the attention coefficient br for the lidar features of
the Velocty Controller tended to grow, while the attention
coefficient bg for the global plan features tended to get lower
(left image of Fig. 3). Meanwhile, the opposite result was
observed when the robot approached the goal (right image
of Fig. 3). These results suggest that the proposed attention
mechanisms helped the robot extract the right information
from the many inputs to the components of our deep model.
More visualizations can be seen in the supplementary video.

Lidar br

Local Plan bl

Global Plan bg
0 1 0 1

Robot

Fig. 3: Attention visualization for the Velocity Controller. Left:
The robot navigates near an obstacle (blue square). Right: the robot
approaches the goal (blue circle).

VI. LIMITATIONS

We conducted experiments in relatively open simulated
environments, but future work should also evaluate the per-
formance of the proposed approach in more narrow spaces,
like corridors. Further, it is important to conduct a systematic
evaluation of our model in real-world scenarios. While we
have attempted such preliminary tests and our system has
worked effectively several times, it has also failed due to er-
rors in people tracking and noise in real lidar measurements,
e.g., due to material reflections, that were not typical of our
simulation. We continue to work to address these issues.

VII. CONCLUSION

We proposed a new navigation system that combines tra-
ditional planning with modern deep learning techniques. The
learning components of the system were structured as a local
planner and a velocity controller. This structure made our
model interpretable. First, by visualizing the local plan, one
could get a sense of how the robot would move and react to
dynamic elements of the environment. Second, by inspecting
the attention coefficients of our model, one could see the
type of information that the robot was considering during
navigation. Overall, our evaluation of the proposed model
suggested that it was effective for navigation in complex dy-
namic environments. The performance of the proposed model
was more consistent than the performance of a traditional
two-layer navigation system with social costs [68]. Moreover,
the learning component of our approach was more successful
at reaching the goal than other deep controllers that mapped
sensor data and a global plan directly to velocity commands,
e.g., [10]. Finally, our results reinforce the idea that imitation
learning can facilitate modeling socially appropriate behavior
from example navigation data [40, 41].

ACKNOWLEDGMENTS

The Toyota Research Institute provided funds to assist with
this research, but this paper solely reflects the opinions and
conclusions of its authors and not of any Toyota entity.

REFERENCES

[1] D. Nakhaeinia, S. H. Tang, S. M. Noor, and O. Motlagh, “A review
of control architectures for autonomous navigation of mobile robots,”
International Journal of Physical Sciences, vol. 6, no. 2, pp. 169–174,
2011.

[2] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[3] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[4] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

[5] R. Kirby, “Social robot navigation,” Ph.D. dissertation, Carnegie
Mellon University, The Robotics Institute, 2010.

[6] B. P. Gerkey and K. Konolige, “Planning and control in unstructured
terrain,” in ICRA Workshop on Path Planning on Costmaps, 2008.

[7] D. V. Lu, D. B. Allan, and W. D. Smart, “Tuning cost functions for
social navigation,” in International Conference on Social Robotics.
Springer, 2013, pp. 442–451.

[8] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End to
end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

[9] A. Loquercio, A. I. Maqueda, C. R. del Blanco, and D. Scaramuzza,
“Dronet: Learning to fly by driving,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 1088–1095, 2018.

[10] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From perception to decision: A data-driven approach to end-to-
end motion planning for autonomous ground robots,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 1527–1533.

[11] W. Gao, D. Hsu, W. S. Lee, S. Shen, and K. Subramanian, “Intention-
net: Integrating planning and deep learning for goal-directed au-
tonomous navigation,” in Proceedings of the 1st Annual Conference
on Robot Learning, ser. Proceedings of Machine Learning Research,
S. Levine, V. Vanhoucke, and K. Goldberg, Eds., vol. 78. PMLR,
13–15 Nov 2017, pp. 185–194.

[12] G. Sepulveda, J. C. Niebles, and A. Soto, “A deep learning based
behavioral approach to indoor autonomous navigation,” arXiv preprint
arXiv:1803.04119, 2018.

[13] A. Kelly, Mobile robotics: mathematics, models, and methods. Cam-
bridge University Press, 2013.

[14] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in Advances in neural information processing systems, 1989,
pp. 305–313.

[15] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-
road obstacle avoidance through end-to-end learning,” in Advances
in neural information processing systems, 2006, pp. 739–746.

[16] E. T. Hall, The hidden dimension. Garden City, NY: Doubleday,
1966, vol. 609.

[17] A. Kendon, Conducting interaction: Patterns of behavior in focused
encounters. CUP Archive, 1990, vol. 7.

[18] V. Kunchev, L. Jain, V. Ivancevic, and A. Finn, “Path planning and
obstacle avoidance for autonomous mobile robots: A review,” in Inter-
national Conference on Knowledge-Based and Intelligent Information
and Engineering Systems. Springer, 2006, pp. 537–544.

[19] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[20] M. W. Otte, “A survey of machine learning approaches to robotic
path-planning,” Cs. Colorado. Edu, 2015.

[21] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[22] S. Thrun and T. M. Mitchell, “Lifelong robot learning,” in The biology
and technology of intelligent autonomous agents. Springer, 1995, pp.
165–196.

[23] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[24] J. Bagnell, J. Chestnutt, D. M. Bradley, and N. D. Ratliff, “Boosting
structured prediction for imitation learning,” in Advances in Neural
Information Processing Systems, 2007, pp. 1153–1160.

[25] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in AAAI, vol. 8. Chicago,
IL, USA, 2008, pp. 1433–1438.

[26] J. Ho, J. Gupta, and S. Ermon, “Model-free imitation learning with
policy optimization,” in International Conference on Machine Learn-
ing, 2016, pp. 2760–2769.

[27] J. A. Bagnell, “An invitation to imitation,” Carnegie Mellon University,
Robotics Institute, Tech. Rep., 2015.

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[29] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cog-
nitive mapping and planning for visual navigation,” arXiv preprint
arXiv:1702.03920, vol. 3, 2017.

[30] J. Rios-Martinez, A. Spalanzani, and C. Laugier, “From proxemics
theory to socially-aware navigation: A survey,” International Journal
of Social Robotics, vol. 7, no. 2, pp. 137–153, 2015.

[31] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate
through crowded environments,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on. IEEE, 2010, pp. 981–986.

[32] M. Kollmitz, K. Hsiao, J. Gaa, and W. Burgard, “Time dependent plan-
ning on a layered social cost map for human-aware robot navigation,”
in Mobile Robots (ECMR), 2015 European Conference on. IEEE,
2015, pp. 1–6.

[33] M. Luber, L. Spinello, J. Silva, and K. O. Arras, “Socially-aware robot
navigation: A learning approach,” in Intelligent robots and systems
(IROS), 2012 IEEE/RSJ international conference on. IEEE, 2012,
pp. 902–907.

[34] P. Trautman, J. Ma, R. M. Murray, and A. Krause, “Robot navigation
in dense human crowds: the case for cooperation,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 2153–2160.

[35] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
compliant mobile robot navigation via inverse reinforcement learning,”
The International Journal of Robotics Research, vol. 35, no. 11, pp.
1289–1307, 2016.

[36] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart,
“Predicting actions to act predictably: Cooperative partial motion
planning with maximum entropy models,” in Intelligent Robots and
Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016, pp. 2096–2101.

[37] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” CoRR, vol.
abs/1703.08862, 2017. [Online]. Available: http://arxiv.org/abs/1703.
08862

[38] B. Okal and K. O. Arras, “Learning socially normative robot nav-
igation behaviors with bayesian inverse reinforcement learning,” in
Robotics and Automation (ICRA), 2016 IEEE International Conference
on. IEEE, 2016, pp. 2889–2895.

[39] C. Johnson and B. Kuipers, “Socially-aware navigation using topolog-
ical maps and social norm learning,” in AAAI/ACM Conf. on Artificial
Intelligence, Ethics, and Society (AIES), 2018.

[40] K. Shiarlis, J. Messias, and S. Whiteson, “Acquiring social interaction
behaviours for telepresence robots via deep learning from demon-
stration,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on. IEEE, 2017, pp. 37–42.

[41] L. Tai, J. Zhang, M. Liu, and W. Burgard, “Socially-compliant navi-
gation through raw depth inputs with generative adversarial imitation
learning,” in Robotics and Automation (ICRA), 2018 IEEE Interna-
tional Conference on, May 2018.

[42] M. Müller, A. Dosovitskiy, B. Ghanem, and V. Koltun, “Driving policy
transfer via modularity and abstraction,” CoRR, vol. abs/1804.09364,
2018. [Online]. Available: http://arxiv.org/abs/1804.09364

[43] Z. Shiller and Y.-R. Gwo, “Dynamic motion planning of autonomous
vehicles,” IEEE Transactions on Robotics and Automation, vol. 7,
no. 2, pp. 241–249, 1991.

[44] J.-P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion
planner for nonholonomic mobile robots,” IEEE Transactions on
Robotics and Automation, vol. 10, no. 5, pp. 577–593, 1994.

[45] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng, “A control architecture for
quadruped locomotion over rough terrain,” in Robotics and Automa-
tion, 2008. ICRA 2008. IEEE International Conference on. IEEE,
2008, pp. 811–818.

[46] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 41,
2017.

[47] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value
iteration networks,” in Advances in Neural Information Processing
Systems, 2016, pp. 2154–2162.

http://www.deeplearningbook.org
http://arxiv.org/abs/1703.08862
http://arxiv.org/abs/1703.08862
http://arxiv.org/abs/1804.09364

[48] A. Sadeghian, A. Alahi, and S. Savarese, “Tracking the untrackable:
Learning to track multiple cues with long-term dependencies,” arXiv
preprint arXiv:1701.01909, vol. 4, no. 5, p. 6, 2017.

[49] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling
attention in human crowds,” in Proceedings of the International
Conference on Robotics and Automation (ICRA) 2018, May 2018.

[50] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[51] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “So-
cial gan: Socially acceptable trajectories with generative adversarial
networks,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), no. CONF, 2018.

[52] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, vol. 1, no. 2, p. 4,
2017.

[53] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell,
and M. Rohrbach, “Multimodal compact bilinear pooling for vi-
sual question answering and visual grounding,” arXiv preprint
arXiv:1606.01847, 2016.

[54] H. Ben-Younes, R. Cadene, M. Cord, and N. Thome, “Mutan: Mul-
timodal tucker fusion for visual question answering,” in Proc. IEEE
Int. Conf. Comp. Vis, vol. 3, 2017.

[55] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine trans-
lation by jointly learning to align and translate,” arXiv preprint
arXiv:1409.0473, 2014.

[56] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[57] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile autonomous driving via end-to-end deep imitation
learning.” in Proceedings of Robotics: Science and Systems (RSS),
2018.

[58] A. Venkatraman, R. Capobianco, L. Pinto, M. Hebert, D. Nardi, and
J. A. Bagnell, “Improved learning of dynamics models for control,” in
International Symposium on Experimental Robotics. Springer, 2016,
pp. 703–713.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[60] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th annual international conference
on machine learning. ACM, 2009, pp. 41–48.

[61] K. A. Krueger and P. Dayan, “Flexible shaping: How learning in small
steps helps,” Cognition, vol. 110, no. 3, pp. 380–394, 2009.

[62] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[63] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling,” in Proceedings of the 2005 IEEE international
conference on robotics and automation. IEEE, 2005, pp. 2432–2437.

[64] D. Fox, “Kld-sampling: Adaptive particle filters,” in Advances in
neural information processing systems, 2002, pp. 713–720.

[65] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” arXiv
preprint, 2017.

[66] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE International
Conference on Image Processing (ICIP). IEEE, 2017, pp. 3645–3649.

[67] D. Helbing and P. Molnar, “Social force model for pedestrian dynam-
ics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.

[68] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps for
context-sensitive navigation,” in Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014, pp.
709–715.

[69] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning
and control,” in Robotics and Automation, 1993. Proceedings., 1993
IEEE International Conference on. IEEE, 1993, pp. 802–807.

[70] R. R. Corbeil and S. R. Searle, “Restricted maximum likelihood (reml)
estimation of variance components in the mixed model,” Technomet-
rics, vol. 18, no. 1, pp. 31–38, 1976.

[71] H. Abdi and L. J. Williams, “Tukeys honestly significant difference
(hsd) test,” Encyclopedia of Research Design. Thousand Oaks, CA:
Sage, pp. 1–5, 2010.

http://arxiv.org/abs/1412.6980

	I Introduction
	II Related Work
	III Approach
	III-A Global Planning: Finding a Route to the Goal
	III-B Local Planning: Predicting Navigation Subgoals
	III-C Velocity Control: Predicting Low-Level Commands
	III-D Learning a Local Planner and Velocity Controller

	IV Experimental Setup
	V Experimental Evaluation
	V-A Evaluation Based on Objective Metrics
	V-B Evaluation Based on Subjective Metrics
	V-C Attention Visualization

	VI Limitations
	VII Conclusion

