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In Human–Robot Interaction, researchers typically utilize in-person studies to collect subjective perceptions
of a robot. In addition, videos of interactions and interactive simulations (where participants control an
avatar that interacts with a robot in a virtual world) have been used to quickly collect human feedback at
scale. How would human perceptions of robots compare between these methodologies? To investigate this
question, we conducted a 2 × 2 between-subjects study (N = 160), which evaluated the effect of the interaction
environment (Real vs. Simulated environment) and participants’ interactivity during human-robot encounters
(Interactive participation vs. Video observations) on perceptions about a robot (competence, discomfort, social
presentation, and social information processing) for the task of navigating in concert with people. We also
studied participants’ workload across the experimental conditions. Our results revealed a significant difference
in the perceptions of the robot between the real environment and the simulated environment. Furthermore, our
results showed differences in human perceptions when people watched a video of an encounter versus taking
part in the encounter. Finally, we found that simulated interactions and videos of the simulated encounter
resulted in a higher workload than real-world encounters and videos thereof. Our results suggest that findings
from video and simulation methodologies may not always translate to real-world human–robot interactions.
In order to allow practitioners to leverage learnings from this study and future researchers to expand our
knowledge in this area, we provide guidelines for weighing the tradeoffs between different methodologies.
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1 Introduction
Differentmethodologies have been proposed to investigate human perceptions of robots inHuman–
Robot Interaction (HRI). Generally, the gold standard is to collect human perceptions through
real-world, in-person studies [5]. However, in-person studies may carry with them administrative
overhead, e.g., the recruiting of participants (perhaps through flyers, social media, or word-of-mouth)
and scheduling. Moreover, each participant must travel in order to interact with a researcher in a
set physical space. In practice, the need for in-person interaction and the associated administrative
overhead could negatively impact the number of participants in an in-person study. Inadvertently,
this could limit the sample size and statistical power a study may achieve [23].

An alternative to in-person studies is to record interactions between a human and a robot in
videos and then gather human perceptions of the robot using a web survey that includes the
recordings. Because of the online nature of the survey, participants can be recruited via online
crowdsourcing platforms [26], allowing researchers to scale data collection and accelerate the pace
of research. However, video studies are not without limitations. First, video interactions between a
human and a robot can lack diversity compared to in-person studies due to the limited number
of scenarios used to create videos. Second, participants who observe interactions through the
recordings are one step removed from the HRI. In this case, participants providing the survey
responses are not interacting with the robot but, instead, they passively view the robot interacting
with another person. Information flow between the robot in the video and the person providing
the label is unidirectional, as opposed to bidirectional, which characterizes interactive encounters
with technology [6, 55].

Recently, simulations of HRI have been used instead of in-person or video-based studies in HRI
[56, 65, 71]. Modern web infrastructure allows researchers to deploy simulations within online
surveys so that online study participants can virtually interact with a robot in a simulator within
their web browser and then provide their perceptions of social robots [65]. Due to the virtual
nature of this process, simulations have the potential to improve the efficiency and scalability of
data collection in HRI while offering a higher level of interactivity than video-based studies. Prior
studies have explored how human perceptions of social navigation robots may differ between
some methodologies, such as between videos and simulations [65]. Other studies have explored the
potential benefits of in-person vs. virtual interactions [1]. Yet, open questions remain on how human
perceptions of a mobile robot for social navigation might differ between such methodologies.

We conducted a study that utilized two navigation tasks to investigate human perceptions of
a mobile robot along four dimensions (competence, discomfort, social presentation, and social
information processing). As shown in Figure 1, the study considered two independent variables. One
variable concerned the level of interactivity of the research methodology (Interactive participation
vs. Video observation). The second variable was the interaction environment (Real vs. Simulated
environment) because simulations used in HRI do not always fully mimic the visual appearance of
the real world.

Our results suggest that there are subtle tradeoffs that must be considered when choosing the
methodology with which one conducts a study. In particular, our results revealed that interaction
environment and interactivity can influence human perceptions of robots in HRI studies. Moreover,
the task can also influence perceptions of a robot’s performance. While simulations and video
studies conducted online are pragmatic for HRI research, our results suggest that user perceptions of
robots gathered with these methodologies may not always translate to perceptions from real-world
HRI. In order to allow practitioners to leverage learnings from this study and future researchers
to expand our knowledge in this area, we provide guidelines for weighing the tradeoffs between
different methodologies in Section 7.
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Fig. 1. Experimental conditions of our 2 × 2 between-subject study. Our independent variables were the
interaction environment (Real vs. Simulated environment) and the level of interactivity of the research
methodology (Interactive participation vs. Video observation).

2 Related Work
This section discusses related work in regards to the types of research methodologies considered
in our study. First, we discuss video-based evaluations and simulation in HRI. Then, we discuss
related work on robot embodiment and physical presence, which are important aspects of in-person
studies.

2.1 Video-Based Evaluation in HRI
Video studies have often been used in HRI to collect data on human perceptions of robots [24, 59],
measure human understandability of robot behavior [13, 52], and gather preferences over robot
behavior [31, 75]. Videos have also been used to portray recordings of HRI in a way that seems
responsive to human actions [44] and for early robot prototyping [22].

Video recordings of HRI allow participants to provide feedback regarding their perception of
a robot without directly interacting with it. Collecting feedback without in-person interaction is
useful when it is infeasible to have a participant interact with the robot due to safety concerns [72]
or when there are restrictions imposed by infectious disease outbreaks [15], which can limit access
to research materials and robots.

While in-person studies require experimenters to find local participants (e.g., using flyers or
word-of-mouth), online video studies can leverage crowdsourcing platforms (such as Prolific or
Amazon Mechanical Turk) to reduce recruitment bottlenecks. Furthermore, crowdsourcing can
enlarge the participant pool beyond a researcher’s immediate geographic location, allowing for
cross-cultural studies (e.g., [11, 27, 41]). Finally, once a study is posted online, crowdsourcing
also allows the scaling of HRI research by enabling many participants to view videos of interac-
tions and provide their feedback in parallel. However, because it is impossible to fully control
the environment in which the video-based study is administered in these cases, there could be
biases in the data collection. For example, bias could be introduced due to the screen size used
by participants [67]. Nevertheless, because crowdsourcing has gained significant popularity in
HRI (e.g., [3, 13, 29, 32, 49, 59, 62, 65]), we also used it in our study about human perceptions of a
mobile robot.

2.2 Simulation in HRI
In HRI studies, simulations have been used to investigate interactions between participants and
robots who engage in a two-way flow of information, which is not present in videos. Early HRI
simulators focused on providing graphical user interfaces for robot development and testing. For
example, the Urban Search and Rescue Simulation supported HRI research in the context of ro-
bot teleoperation [36]. Chernova et al. created an online multiplayer game that simulated HRI
for learning interactive robot behavior [9]. Other robotics simulators allow users to teleoperate
human avatars to enable virtual interactions with robots. For instance, the Modular OpenRobots
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Simulation Engine (MORSE) [14] was integrated with human avatars to allow for virtual ex-
perimentation [35]. Also, the Social Environment for Autonomous Navigation 2.0 (SEAN
2.0) [66] integrated the Unity game engine with the Robot Operating System (ROS) to make it
possible to train and evaluate social robot navigation policies.

A common limitation of simulation is the lack of visual realism. Rich-client simulations such as
MORSE and SEAN 2.0 have partly addressed this limitation, but they typically require a powerful
computer with a dedicated GPU to render the virtual world. Web technologies, such as SEAN-EP
[65], have been used to increase accessibility to rich-client simulations by allowing a participant to
interact with a robot in a simulated environment using a standard web browser. We used SEAN-EP
in our study so that participants did not need to install simulation software locally or have a
dedicated GPU.

One might naturally assume that more visual realism, via higher-fidelity simulations, is always
better than less visual realism. Surprisingly, Truong et al. [63] found that lower fidelity simulations
resulted in better sim-to-real transfer of robot navigation behavior. This result inspired us to
compare human perceptions of a robot where visual realism can differ based on the interaction
environment in which humans observe HRI. In our work, these observations were obtained in
fully realistic environments (showing real-world interactions in a lab), or they were obtained in a
simulation of the lab environment.

Close to our work, Tsoi et al. [65] examined differences in human perceptions of a Kuri robot in
two setups: participants either interacted with the robot in SEAN [64], or they observed videos
of HRI in the simulation. They found that, for navigation tasks, a robot viewed in a video was
perceived as more competent than one experienced interactively in SEAN. Additionally, participants
in the interactive simulation condition reported less mental demand than participants in the
video condition. However, no comparison was made with respect to real-world interactions, as in
our study.

2.3 Physical Robot Embodiment and Presence
One important difference between in-person studies and both video and simulation methods is
robot embodiment and presence. These concepts are related but capture different aspects of the
interaction [42]. Robot embodiment describes the morphology and visual characteristics of a robot,
which can differ between the real world and virtual environments. Type of presence describes
where a robot is located and thereby can influence the medium over which the same robot is
experienced (typically in-person, via teleconference, or in a one-way video). There has been much
interest in how perceptions of robots are influenced by robot embodiment and presence, but results
are inconsistent.

Robot embodiment can influence human perceptions of a robot and HRI [10, 12, 16, 37, 58, 68, 70].
Robot embodiment is not a binary concept but exists on a spectrum [16] ranging from disembodied
agents that communicate only over text or speech [10, 70], to agents simulated on a screen using
a two-dimensional interface or avatar [12] to agents modeled in a three-dimensional simulation
[36, 64, 66], to agents that exist with a physical presence in the real world. For example, Strait
et al. [58] studied the effects of direct versus indirect speech on humans for an advice-giving robot
where relevant factors in the study included robot appearance and robot presence. In another study,
Wainer et al. [68] compared human perceptions of a co-located physical robot, a remotely located
(telepresent) robot, and a simulated robot that explained and supervised a Towers of Hanoi puzzle.
The study results suggested that physically embodied co-located interactions are more enjoyable
than interactions with remote-located and simulated robots.

Research suggests that human behavior and human perception of robots can be influenced
by robots’ presence, although results vary in the literature. For example, Jung and Lee [28] and
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Fig. 2. Photos of the Real (a and b) and Simulated (c and d) environments. The Interactivity level manipulated
how the participant interacted with each of the environments. A participant in the Real-Interactive condition
(a) wore a chest harness with trackers for localization and a GoPro camera while interacting with the robot in
the real world. A participant in the Sim-Interactive condition (c) used keyboard controls to control an avatar
through the virtual lab. Participants in the Video conditions watched video recordings of the interactive
participants. During the art task, the robot guided a participant to a poster and communicated with the
participant using text on the real (b) or simulated (d) laptop screen.

Lee et al. [34] found that the physical presence of a robot can influence its perceived social presence;
however, Thellman et al. [61] found that the perceived social presence of a robot was not influenced
significantly by its physical or virtual presence [61]. Other examples are found in Bainbridge et al.
[1] and Salomons et al. [54], who compared physically present robots with a live video stream of
robots on a book-moving task and an exercise task, respectively. These studies found that people
were more likely to fulfill an unusual request by the robot, afforded greater personal space to it,
and made fewer exercise mistakes when it was physically present. But in social robot navigation,
Woods et al. [72] found that perceptions of a robot approaching people were consistent between
video and real-world settings. Our study further expands this line of work on the effects of presence
on human perceptions of robots.

3 Method
Prior work on human perceptions of robots in video, simulation, and in-person studies has been
largely fragmented by the research methodologies. To more comprehensively understand how
human perceptions vary between these methodologies, we conducted a 2 × 2 between-subjects
study with a mobile robot in a laboratory setting. The two independent factors of our study were
Interaction Environment (Real vs. Simulated environment) and the level of Interactivity of the
research methodology (Interactive participation vs. Video observation). Photos of all experimental
conditions are shown in Figure 1. The difference between Real and Simulated interactions is shown
in Figure 2. To the best of our knowledge, our study, which utilized two navigation tasks, is the
first to compare human perceptions of robots obtained in real-world interactions with perceptions
obtained from interactive simulations, where humans control a virtual avatar. We compared these
human perceptions of a robot in real-world interactions and interactive simulations with perceptions
of the robot after viewing a video recording. Our study protocol was approved by our Institutional
Review Board.
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3.1 Hypotheses
As shown in Figure 1, our two independent variables led to four conditions: Real-Interactive, Real-
Video, Sim-Interactive, and Sim-Video. We studied whether these conditions had an effect on four
aspects of human perceptions of the robot: Competence [17], Discomfort [8], Social Presentation, or
“the robot’s ability to appear to be a desirable social partner” [4], and Social Information Processing,
which captures social intelligence [4]. We also studied the effect of interactivity on perceived
workload [19]. These measures are common in the HRI literature [18, 30, 33, 47, 57].

Our first set of hypotheses focused on the idea that human perceptions of a mobile robot in the
Real environment would differ from perceptions of the robot in the Simulated environment. These
hypotheses were motivated by prior work that suggests that peoples’ perception of a robot can
vary between simulation and real-world interactions (e.g., [38, 65, 69]). In particular, Tsoi et al.
[65] provided evidence that human perceptions of robots collected via video studies and compared
to those collected using interactive, online simulations could differ, but did not compare them to
observations obtained in real-world HRI. More specifically:

H1.Human perceptions of the robot’s competence (H1a), discomfort (H1b), social presentation (H1c),
and social information processing (H1d) in the Real environment will differ from the Simulated
environment.

Our second set of hypotheses tested the potential difference in human perception of amobile robot
between a participant interacting with a robot compared to a participant viewing an interaction
with another person in a video. This hypothesis is motivated by the common use of videos in HRI
studies and the growing use of interactive simulations as a potential replacement [56, 65, 71]. Prior
work suggests that people may perceive a robot more positively when physically present [37] and
that people may be influenced by co-present robots (e.g., [1, 21]).

H2.Human perceptions of the robot’s competence (H2a), discomfort (H2b), social presentation (H2c),
and social information processing (H2d) will differ between interactive conditions (Sim-Interactive
and Real-Interactive) and video-based conditions (Sim-Video and Real-Video).

Our third set of hypotheses considered data from the Real-Interactive condition as the gold stan-
dard for gathering human perceptions of robots. Then, because video observations lack interactivity
in comparison to interactive simulations, we suspected that human perceptions collected with the
Sim-Video and Real-Video conditions would be less similar to those obtained in the real world than
the perceptions obtained with the Sim-Interactive condition.

H3.Human perceptions of the robot’s competence (H3a), discomfort (H3b), social presentation (H3c),
and social information processing (H3d) in video-based conditions (Sim-Video and Real-Video) are
more similar to the Sim-interactive condition than to the Real-Interactive condition.

Our fourth and final hypothesis is motivated by prior work that associates embodied and
interactive experiences with low workload. For example, Wang et al. [70] found that robot agent
embodiment resulted in lower perceived workloads during interaction with robotic agents compared
to voice-only agents. Tsoi et al. [65] found partial support for lower perceived workload when
completing an HRI survey that involved providing perceptions of a robot in interactive interactions
compared to a survey that involved providing perceptions based on video observations

H4. The Interactive conditions will lead to a lower perceived workload by participants than the
Video conditions.
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3.2 Participants
In total, we recruited 213 participants for our study. For the Real-Interactive condition, participants
were recruited via flyers and word of mouth. Participants for all other conditions were recruited
online using the Prolific crowdsourcing platform.

All the participants were at least 18 years old, had normal or corrected-to-normal vision, and
were fluent in English. The participants in the Real-Interactive condition were required to be able to
walk comfortably and stand for the duration of the study (20–30 minutes). Participants in the online
portion of the study were limited to those on non-mobile devices, such as laptops and desktop
computers, to ensure a reasonable screen size on their device and the ability to control the virtual
avatar in simulation using a physical keyboard.

We excluded 53 participants from analyses because 35 participants in an Interactive condition had
incomplete video recordings due to technical issues or had incomplete surveys, 14 participants had
other technical issues or did not follow directions, and 4 accidentally participated in the Sim-Video
condition after participating in the Sim-Interactive condition.

Among the final 160 participants (40 per condition), 90 participants identified as male, 66 as
female, 2 as non-binary, 1 as genderqueer, and 1 declined to state their gender. Additionally, 32
participants were between ages 25–34, 50 were between ages 35–44, 40 were between ages 45–54, 23
were between ages 55–64, 13 were between ages 65–74, and 2 were between ages 75–84. On average,
the participants indicated neutral familiarity with robots on a 7-point scale (" = 3.91, (� = 0.13).
The online participants had an average Internet speed of 163.46 Mbps ((� = 15.86), which was in
line with prior use of SEAN-EP [65].

3.3 Setup
For the Real-Interactive condition, the experiment was conducted in a laboratory room on a
university campus in the United States. The room contained physical obstacles consisting of
EverBlock construction blocks, as shown in Figures 1(a) and 2(a). There were also four distinct
pieces of artwork on easel stands positioned in the corners of the room. A close-up photo of one of
the pieces of artwork in the real laboratory environment is shown in Figure 2(b).

We designed our study such that a robot, controlled by the ROS Navigation Stack with Social
Cost Layers [39], autonomously navigated near the participant to jointly complete two tasks: the
Follow Task and the Art Task. The Follow Task was designed to place the participant’s focus on
the robot throughout the interaction. Follow tasks are typical for robots that serve as tour guides
and have been investigated in the past in social navigation [7, 43, 45, 53]. Meanwhile, we designed
the Art Task to allow participants to observe the robot’s movement during a more dynamic and
complex navigation task. These tasks are further described in the next section. Importantly, the
robot that we used in the study was a Pioneer 3-DX on which we affixed a laptop, oriented with the
screen pointing forward, to allow for robot communication with the participant. We also attached
a depth sensor and localization beacon to the robot.

The participants in the Real-Interactive condition wore a GoPro camera on their chest (as in
Figure 2(a)) to record videos from a first-person perspective while completing study activities. HTC
Vive Trackers were used to localize the robot and the participants. Also, the participants used a
custom web application on a mobile phone, which we provided, to do task-specific actions. This
included pressing a button on the phone to begin each task and recording their answers to survey
questions. The web application was also used to display text on the robot’s laptop.

For the Sim-Interactive condition, we modeled the laboratory room used for the Real-Interactive
condition as well as the Pioneer robot using the Unity game engine and SEAN 2.0 [66]. Figures 1(b),
1(d), 2(c), and 2(d) illustrate the virtual world that we created for the study. In addition, we used
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SEAN-EP [65] to embed our simulation in a Qualtrics web survey, which gathered participants’
demographic data and all other relevant measures regarding their experience of virtual human–
robot interactions. The participants used their keyboards to control a virtual avatar in the SEAN
simulations and to complete the same activities as in the Real-Interactive condition.

For the Real-Video and Sim-Video conditions, we used recordings of participants’ interactions
with the robot in the real-world lab and the virtual re-creation, respectively. A GoPro camera
worn by participants in the Real-Interactive condition (as in Figure 2(a)) was used to record the
interactions that were observed by participants in the Real-Video condition. For the Sim-Video
condition, we used SEAN 2.0 to save video recordings of the HRI that happened under the Sim-
Interactive condition. The recordings were made from the perspective of the virtual avatar that was
controlled by a human in SEAN. In order to ensure participants in the Video condition were able to
understand what the robot was communicating, we added captions to all videos that displayed the
same text that was shown on the robot’s laptop screen. We did not use audio in the simulation or
the videos due to the difficulty of generating realistic audio. An example of the captions is provided
in Figure 1(c) and (d). The videos were then embedded in a Qualtrics survey like the one used for
the Real-Interactive condition.

3.4 Procedure
At the beginning of the study, the participant provided demographic information (as in Section 3.2).
Then, the participant continued on to complete the study’s four phases: (1) Introduction, (2) Follow
Task, (3) Art Task, and (4) Closing. In each task, the participant was specifically asked to pay
attention to how the robot moved.

Phase 1: Introduction. In the Real-Interactive condition, the participant was introduced to the robot
by an experimenter who told them that they would interact with the robot through a series of
tasks. Then, the experimenter assisted the person as they put on the GoPro chest harness to record
their activities during the study. In the Sim-Interactive condition, the participants completed a
walk-through tutorial that showed them the virtual Pioneer robot and their randomly assigned
avatar. The walk-through then explained how to navigate the simulated lab. In the Real-Video and
Sim-Video conditions, the participant was given text instructions indicating that they would watch
videos of a person or avatar interacting with a robot. The participant was also shown an image of
the robot to familiarize the person with the Pioneer 3-DX platform.

Phase 2: Follow Task. In the Real-Interactive condition, the participant was instructed to move to a
specific marker on the floor and then press a button on the mobile device to begin the follow task.
Then, the participant followed the robot along a pre-defined path, which was composed of four
segments.

The path involved navigating around EverBlock construction blocks placed throughout the room,
as shown in Figure 2(a) and (c).

After following the robot along each of the four path segments, the participant answered survey
questions about their impression of the robot. In the Sim-Interactive condition, the participant
completed the same task but in a SEAN simulation.

For the Real-Video and Sim-Video conditions, we paired each participant with a study session that
involved Real-Interactive and Sim-Interactive participation, respectively. Then, the videos of the
Follow Task from the Interactive sessions were shown to the participants in the Video conditions.
In this manner, a participant in Real-Video and Sim-Video conditions was able to watch recordings
of the task and answer survey questions about their impression of the robot in the videos as in the
Interactive conditions.
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Phase 3: Art Task. In the Real-Interactive condition, the participant was told that there had been
an art heist in the lab, and some of the art had been replaced with fakes. The participant and the
robot were tasked with collecting information about the four art pieces in the laboratory to help
the experimenters figure out which were real and which were fake. Figure 2(b) displays one of the
art pieces in the real world, and Figure 2(d) shows it in simulation. For each of the four art pieces, a
participant performed the following steps:

(1) The participant was directed to find the robot.
(2) Once the person found the robot, a text message was displayed on the robot’s computer

screen which instructed them to follow it.
(3) The robot then led the participant to a piece of artwork.
(4) The participant was instructed via text on the robot’s computer screen to count the number

of a given object shown in the art piece.
(5) After instruction, the robot moved away to a different location and waited for the participant

to complete the object counting.
(6) The participant provided their answer to the counting request using the mobile device and

was directed to find the robot again to repeat the process for the next art piece.

The Art Task was designed so that the person and the robot would engage in more dynamic
interactions than in the Follow Task. In this case, while the person was counting objects in an art
piece, the robot moved far from the participant and waited until they completed counting the objects
in the picture. Only when the participant started moving away from the picture did the robot start
to move back towards the person. Then, both the robot and participant moved towards each other
and soon thereafter engaged in face-to-face or side-by-side spatial formations (e.g., as in [25, 74]).

In the Real-Video and Sim conditions, the description of the Art Task was provided in text before
the participant began the task.

Also, in the Sim-Interactive condition, the participant used an interface that we implemented
in the simulation to record their responses to the counting request by the robot. Meanwhile, in
the Video conditions, the participant recorded their answers using the Qualtrics web survey. This
survey included videos from Interactive conditions using the same participant-session pairing
explained for the Follow Task.

Phase 4: Closing. Finally, the participant provided their impressions of their perceived workload for
the tasks in the study.

In-person participants in the Real-Interactive condition were paid $15.00 USD per hour rounded
to the nearest 10-minute increment.

Participants in all other conditions completed the study online using Prolific. They were paid
$5.00 USD as we estimated the online study sessions to take 20 min.

3.5 Dependent Measures
We measured 2 aspects of participants’ experience during our study using widely adopted survey
measures in HRI:

Human Perceptions of the Robot. We measured four aspects of human perceptions of the robot:
(1) Competence, (2) Discomfort, (3) Social Presentation, and (4) Social Information Processing.
The first two aspects were measured using the Robot Social Attributes Scale (RoSAS) [8], which
includes robot Competence and Discomfort factors. The items were answered in relation to how the
robot moved during the tasks. Ratings for the Competence and Discomfort scales were gathered on
7-point responding format ranging from 1 (Definitely Not Associated) with the robot to 7 (Definitely
Associated), which was the same as the original RoSAS responding format.
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Robot Social Presentation and Social Information Processing were measured using the short-form
of the Perceived Social Intelligence (PSI) questionnaire [4]. The Social Presentation scale had
a total of seven items, all of which began with “This robot…” and ended with statements such as
“enjoys meeting people,” and “cares about others.” The Social Information Processing scale had
a total of 13 items, which started with “This robot…” and ended with statements like “responds
appropriately to human emotion” or “can figure out what people think.” Ratings for PSI statements
were gathered on a 5-point responding format ranging from 1 (Strongly Disagree) to 5 (Strongly
Agree), which was the same as the original PSI responding format.
For each scale, we aggregated responses across items to calculate a composite measure after
confirming high internal reliability. The Cronbach’s U values were 0.90 for Competence, 0.76
for Discomfort, 0.76 for Social Presentation, and 0.94 for Social Information Processing. The
Cronbach’s U value for each aspect we measured was within the 0.7 to 0.95 acceptable value
range [60].

Perceived Workload. We used items from the NASA Task Load Index (TLX) [19] to assess the
perceived workload for the Follow and Art Tasks. Perceptions of Mental Demand, Physical Demand,
Temporal Demand, Effort, and Frustration were gathered on a 7-point responding format from 1
(lowest) to 7 (highest). The 7-point responding format was used for consistency in the responding
format with the other scales. The 7-point format was chosen over the 5-point format because
responding formats with 6 or more categories have been shown to correlate better [51]. Example
survey items included “How mentally demanding were the tasks?” (Mental Demand) and “How
insecure, discouraged, irritated, stressed, and annoyed were you?” (Frustration). The Cronbach’s
U for the NASA TLX survey items was 0.75, which is within the 0.7–0.95 range of acceptable
values [60].

3.6 Analysis
We analyzed the results by task (Follow and Art) in two ways. First, we fitted linear mixed-
effect models for all dependent measures with fixed effects for Interaction Environment (Real or
Simulation) and Interactivity (Interactive participation or Video observation). We also assigned a
unique identifier, Session ID, to each Interactive study session, which was added as a random effect
in our linear model. A linear mixed-effect model was used due to the hierarchical nature of the
data, i.e., Participant ID was nested within Session ID. This allowed us to associate the experience
in the Interactive conditions, from which we made videos of HRI, with the corresponding data in
the Video conditions. Unless otherwise noted, we used the Restricted Maximum Likelihood (REML)
method for model estimation [48]. A linear mixed model was used for model estimation instead of
ANOVA because of the nested nature of the data, i.e., Participant ID was nested within Session ID.
Nesting was necessary because the video-condition stimuli were generated from a recording of the
Interactive condition, which resulted in the interactive data and corresponding video recordings
being paired. Note that within the paired data, the participant who interacted with the robot (either
in the Real environment or simulation) was not the same as the participant who watched the video,
so a unique Participant ID was used to identify all participants. Second, because H3 considered the
Real-Interactive condition as the methodology that provides gold-standard results, we performed
treatment contrasts between the Real-Interactive condition and all other conditions.

4 Results
4.1 Perceptions of the Robot

4.1.1 Competence. The linear mixed model analysis per task revealed significant effects. In
particular, for the Follow Task, we found Interaction Environment to have a significant effect on
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Fig. 3. Contrast results for RoSAS Competence (a and b), RoSAS Discomfort (c and d), PSI Social Presentation
(e and f), and PSI Social Information Processing (g and h) by task. Box plots span the first to third quartile; a
dark grey horizontal line through the box indicates the median, and a white circle indicates the mean. Box
plot whiskers extend to ±1.5 times the Interquartile Range. The ∼ indicates ? < 0.10, * indicates ? < 0.05,
and ** indicates ? < 0.001.

Competence, � (1, 156) = 4.30, ? = 0.04. The effect size, as measured by Cohen’s d, was 3 = 0.16,
indicating a very small effect. A post hoc t-test showed that people perceived the robot to be
significantly more competent in the Real condition (" = 4.85, (� = 0.06) than in the Simulated
condition (" = 4.55, (� = 0.07). The linear mixed model analysis on the Art Task showed that only
Interactivity had a significant effect on Competence, � (1, 156) = 5.39, ? = 0.022. The effect size, as
measured by Cohen’s d, was 3 = 0.18, indicating a very small effect. A post hoc t-test indicated that
competence ratings were significantly higher for Interactive participation (" = 5.56, (� = 0.11)
than for Video observation (" = 5.20, (� = 0.11).

Comparing the Real-Interactive condition as the baseline condition against three other conditions
with treatment contrasts revealed that the Real-Video condition significantly differed from the Real-
Interactive condition in the Follow Task, � (1, 156) = 3.94, ? = 0.05. The effect size, as measured by
Cohen’s d, was3 = 0.22, indicating a small effect. Specifically, compared to interactingwith the robot
in the real world (" = 4.65, (� = 0.09), participants watching videos of the robot interacting with
someone else in the real world perceived the robot to be even more competent (" = 5.05, (� = 0.08).
For the Art Task, only the Sim-Video condition was significantly different from the Real-Interactive
condition, � (1, 156) = 4.79, ? = 0.03 The effect size, as measured by Cohen’s d, was 3 = 0.24,
indicating a small effect. This suggests that compared to watching a video of a person interacting
with the robot in simulation (" = 5.11, (� = 0.16), participants who interacted with the robot in
the real world viewed it to be even more competent (" = 5.59, (� = 0.14). These results are shown
in Figure 3(a) and (b).

4.1.2 Discomfort. The linear mixed model analyses on both tasks resulted in no significant main
effects on discomfort.
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The contrast analyses for the Discomfort responses in the Follow and Art Tasks led to no
significant differences. However, the discomfort ratings in the Sim-Video condition were marginally
different from the Real-Interactive ratings in the Follow Task, � (1, 156) = 3.57, ? = 0.06. The effect
size, as measured by Cohen’s d, was 3 = 0.21, indicating a small effect. This indicates that compared
to watching a video of a simulation (" = 2.47, (� = 0.08), participants who interact with a robot
in the real world may view the robot as less discomforting (" = 2.17, (� = 0.07). Additionally,
discomfort in the Real-Video condition was marginally different from the Real-Interactive condition
in the Art Task, � (1, 156) = 3.48, ? = 0.06. The effect size, as measured by Cohen’s d, was 3 = 0.21,
indicating a small effect. This indicates that compared to interacting with a robot in the real world
(" = 2.06, (� = 0.13), participants who watch a video of the real-world robot interacting with
another participant may view the robot as less discomforting (" = 1.71, (� = 0.13). These results
are shown in Figure 3(c) and (d).

4.1.3 Social Presentation. The linear mixed model analyses and the treatment contrasts per task
showed no significant effects on Social Presentation ratings. In general, most ratings were neutral
in the Follow Task and slightly positive in the Art Task, as shown in Figure 3(e) and (f). The slight
increase in Social Presentation perceptions for the Art Task was expected because the task involved
more complex interactions than the Follow Task, as indicated in Section 3.4.

4.1.4 Social Information Processing. The linear mixed model analysis on Social Information
Processing for the Follow Task revealed a significant main effect of Interaction Environment on
the ratings, � (1, 157) = 6.71, ? = 0.01. The effect size, as measured by Cohen’s d, was 3 = 0.41,
indicating a small effect. A post hoc t-test indicated that people perceived the robot as better
able to process social information in the Simulated condition (" = 2.56, (� = 0.09) than in the
Real condition (" = 2.23, (� = 0.09). The linear mixed model analysis for the Art Task also
indicated that Interaction Environment had a significant effect on Social Information Processing,
� (1, 157) = 5.02, ? = 0.03. The effect size, as measured by Cohen’s d, was 3 = 0.35, indicating a
small effect. The post-hoc test indicated that ratings were higher for the Simulated environment
(" = 2.79, (� = 0.10) than for the Real environment (" = 2.47, (� = 0.09).

The contrast analyses on the Follow task indicated a significant difference in Social Informa-
tion Processing ratings between the Sim-Interactive and Real-Interactive conditions, � (1, 156) =
7.29, ? = 0.008, as well as between the Sim-Video and Real-Interactive conditions, � (1, 156) =

5.31, ? = 0.02. The effect sizes, as measured by Cohen’s d, were 3 = 0.60 and 3 = 0.52, respectively,
indicating a medium effect for both contrasts. This suggests that compared to interacting with
the robot in the real world (" = 2.11, (� = 0.12), participants viewed the robot as more capable
of processing social information when interacting with it in simulation (" = 2.60, (� = 0.15)
and when viewing it in a video in simulation (" = 2.53, (� = 0.11). These results are shown in
Figure 3(g). For the Art Task, the contrast analyses showed no significant differences in Social
Information Processing with respect to Real-Interactive. The results for the Art Task are shown in
Figure 3(h).

4.2 Perceived Workload
We analyzed the perceived workload with linear mixed model analyses that included Interaction
Environment (Real or Simulation), Interactivity (Interactive participation or Video observation)
and their interaction as main effects. Also, we added Session ID as a random effect. In the case of
workload, we did not perform contrast analyses as in Section 4.1 because H4 did not consider the
Real-Interactive condition as a specific baseline for comparison.

The average ratings for Physical Demand and Temporal Demand were 1.48((� = 0.07) and
1.76((� = 0.08), respectively. We found no significant effects on these measures.
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Fig. 4. Perceptions of Mental Demand, Effort, and Frustration by condition: Real-Interactive, Real-Video,
Sim-Interactive, and Sim-Video. Box plots span the first to third quartile; a dark grey horizontal line through
the box indicates the median, and a white circle indicates the mean. Box plot whiskers extend to ±1.5 times
the Interquartile Range. The * symbol indicates ? < 0.05.

Interaction Environment had a significant effect on Mental Demand (� (1, 156) = 8.60, ? = 0.004),
Effort (� (1, 156) = 6.94, ? = 0.009) and Frustration (� (1, 156) = 5.77, ? = 0.017). The effect sizes,
as measured by Cohen’s d, were Mental Demand 3 = 0.46, Effort 3 = 0.42, and Frustration
3 = 0.38, indicating small effects. The post hoc t-test on Mental Demand indicated that participants
provided higher ratings in the Simulated environment (" = 3.15, (� = 0.16) than in the Real
environment (" = 2.45, (� = 0.18). The distribution of Mental Demand ratings is shown in
Figure 4(a). Likewise, in the case of Effort, the post-hoc test showed that the ratings in the Simulated
environment (" = 3.18, (� = 0.18) were significantly higher than those in the Real environment
(" = 2.51, (� = 0.19), as shown in Figure 4(b). Finally, the post-hoc test for Frustration revealed that
participants felt more “insecure, discouraged, irritated, stressed and annoyed” with the Simulated
environment (" = 2.21, (� = 0.17) than with the Real environment (" = 1.68, (� = 0.15).
Figure 4(c) shows the distribution of results for Frustration.

Interactivity had no significant effect on Mental Demand or Frustration; however, we found
an interaction effect between Interaction Environment and Interactivity on Effort, � (1, 156) =

12.45, ? < 0.001, '2
�3 9DBC43

= 0.10. A post-hoc Tukey HSD test indicated that the Effort for the
Real-Interactive condition (" = 1.98, (� = 0.17) was significantly lower than for Real-Video
(" = 3.05, (� = 0.32) and Sim-Interactive (" = 3.53, (� = 0.26).

5 Discussion
In our first set of hypotheses, our results indicated some support. Results showed a significant
difference between perceptions of the robot in simulation compared to the real environment.
In particular, we found higher Competence ratings (H1a) for the robot in the real laboratory
environment than in simulation, although the effect was small. We suspect the difference was due
to the greater level of visual realism exhibited by the real robot [69]. Also, we found that the real
robot was perceived as less capable of processing social information than the simulated robot (H1d).
Social information processing (SIP) refers to the robot’s ability to perceive the social behaviors,
emotional states (including desires), and cognitions (including beliefs) of nearby people [4]. The
effect for SIP was larger than the effect for Competence, but still small. It could be that human
perceptions about the robot’s social information processing abilities were influenced by their virtual
avatar in the simulations, which behaved in a much simpler way than people could in the real
laboratory environment and looked less realistic as well.
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We found evidence for some of our second set of hypotheses, which posited that human percep-
tions of the robot will differ between Interactive participation and Video observations. In particular,
for the Art Task, participants viewed the robot as more competent with Interactive participation
than when HRI were observed in Videos. Although the effect size was small, our results were
surprising because they did not align with the results by Tsoi et al. [65], who compared human
perceptions of the competence (H2a) of a Kuri robot in interactive SEAN simulations and in videos
of the simulation. Beyond the fact that Tsoi et al. [65] did not consider real-world interactions,
we believe that the inconsistency in findings could be due to three reasons: (1) the laboratory
environment used in our work had more obstacles and fewer people than the one used in [65]; (2)
we used a Pioneer robot which could set different initial human expectations than the Kuri robot
used in [65]; and (3) the Art Task was more complex than the Follow Task, and [65] only studied
situations where participants followed the robot. Future work should investigate which factors
specifically affect human perceptions of the competence of a robot between HRI studies involving
Interactive participation and Video observation.

As to our third set of hypotheses, we obtained some evidence that human perceptions of the
robot in the Video conditions are more dissimilar to the Real-Interactive condition than those in the
Sim-Interactive condition. For example, contrast analyses indicated that robot competence (H3a)
was significantly different between the Real-Interactive condition and the Real-Video conditions
(for the Follow Task) and between the Real-Interactive and Sim-Video conditions (for the Art Task).
No significant differences were found for competence between Real-Interactive and Sim-Interactive
conditions. In terms of discomfort (H3b), we found trends that suggested similar differences but
for the opposite task—compare Figure 3(a) with (c), and Figure 3(b) with (d). Again, no significant
differences were found for discomfort between Real-Interactive and Sim-Interactive. However,
for social information processing (H3d), Real-Interactive led to significantly different results than
both Sim-Video and Sim-Interactive. This last result was unexpected and not in line with our
hypothesis. Overall, the main takeaway from these results is that perceptions of robots gathered
through video observation and interactive simulation studies may not always translate to real-world
interactions.

Finally, we found only a small amount of evidence in support of our last hypothesis, which
stated that cognitive load would be lower for Interactive participation than Video observations.
More specifically, only perceived effort was significantly lower for the Real-Interactive condition
than for the Real-Video condition. Interestingly, most of our results in regard to workload were
instead about differences between the Real and Simulated environments, including differences for
mental demand, effort, and frustration. We thought that this result could be due to the fidelity of
our SEAN 2.0 simulations. Although SEAN 2.0 generates the renderings through Unity and there
is potential to make these simulations photo-realistic, our virtual laboratory environment looked
much simpler than the real-world lab (as can be seen in Figures 1 and 2). For example, while humans
are adept at identifying coherent concepts from the visual clutter typically found in the real world
[46], increased participant effort may be necessary to interpret and interact with the robot in the
simulation environment, which contains a distribution of visual clutter different from the real world.
In the future, exploring how environmental clutter affects human perceptions of robots in HRI could
be an interesting avenue of research, for example, by comparing with experiments in simulation
that incorporate real-world clutter [73]. Another factor to consider is the usability and computing
experience of the different systems implemented for each condition, which may have also had an
impact on participant workload. Overall, this is a first step towards a better understanding of how
different methodologies can influence the perceptions of mobile robots for social navigation. We
hope future HRI studies can explore this direction on a larger scale.
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6 Limitations
First, we conducted our study with only one simulation environment (SEAN 2.0 [65]). It would
be interesting to verify in the future if our results hold with other types of simulators, e.g., built
using other game engines like Unreal [40] or with lower fidelity like Gazebo [50]. Second, as with
all simulations, our simulated environment and the videos thereof were not perfect replicas of
the real world. In the future, it would be interesting to investigate the impact of factors such as
the lack of audio in simulation, which could have influenced perceptions of the robot in the Sim
and Video conditions, the size and the resolution of the display or Head Mounted Display, and
properties of the randomly assigned virtual avatars, such as gender, which may not match that of
the participant. Third, we focused on investigating people’s perceptions of robots using subjective
responses to well-established questionnaires. However, future research could benefit from including
behavioral outcomes, like proxemics measures [20], when comparing research methodologies for
social robot navigation. When evaluating results for other tasks, perhaps other behavioral measures,
like teamwork efficiency [2], could be used instead. Lastly, it would be interesting to investigate to
what extent the crowdsourcing setup that we used to gather data in three experimental conditions
affected our results. In particular, one could imagine replicating our study in the future with
100% in-person participants, such that no participant is subject to the distractions and technical
challenges that often arise with remote participation through crowdsourcing [67].

7 Guidelines for Methodology Selection
The choice of methodology is one of the many considerations that a researcher must evaluate
when approaching new experimental questions in HRI. The primary considerations are time and
cost. Ideally, minimal time is required to set up and complete the study while minimizing the
cost. Although in-person user studies are the gold standard, often video studies are used. Video
studies can allow crowdsourcing of user feedback, which scales quickly, but the quality of responses
can vary if participants are not engaged with or focused on the video. With recent technological
advancements, interactive simulations can now scale with the use of crowdsourcing [65]. they can
encourage a participant to remain engaged with the task or detect if the person is not engaged. Other
considerations include the availability of a real robot, the safety of the task experienced via different
methodologies, and the quality of the simulation along the dimensions of importance. Perhaps in
the future, we may have widely available, photo-realistic, real-time, interactive simulations that
will decrease the gap between methodologies. However, until this is the case researchers should
carefully consider the tradeoffs.

8 Conclusion
We investigated how people perceived the competence, discomfort, social presentation, and social
information processing of a mobile robot during two navigation tasks. Our study compared method-
ologies with different Interaction Environments (Real vs. Simulated) and Interactivity (Interactive
participation vs. Video observations). We found significant differences in human perceptions of a
mobile robot when an interaction was experienced in the real world compared to simulation. In
addition, we found significant differences in human perceptions when participants watched a video
of an HRI compared to when they participated in the interaction, experiencing the two-way flow
of information.

Overall, our study suggests that results from user studies that rely on video observations and
interactive simulations may not always mirror human perceptions of robots in real-world HRI.
Importantly, we found tradeoffs between Real-Video, Sim-Video and Sim-Interactive methodologies.
First, our work provides initial evidence that suggests that human perceptions of a robot in video
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studies may be less similar to real-world in-person studies in comparison to interactive simulation
studies. This suggests that an interactive simulation should be preferred over observing videos.
Second, we found that participants perceived greater workloads in simulated environments than in
real-world environments. A lesser workload in the real world may help explain why, in some prior
work, humans preferred in-person HRI more than simulated or video interactions [1, 68]. Also,
our results with respect to workload suggest that Real-Video may be preferred over Sim-Video
and Sim-Interactive. Ultimately, it is important to consider whether human perceptions are likely
to translate to the real world, and human workload when choosing a methodology other than
in-person studies to investigate HRI.

References
[1] Wilma A. Bainbridge, Justin W. Hart, Elizabeth S. Kim, and Brian Scassellati. 2010. The benefits of interactions with

physically present robots over video-displayed agents. International Journal of Social Robotics 3, 1 (2010), 41–52.
[2] David P. Baker and Eduardo Salas. 1992. Principles for measuring teamwork skills. Human Factors 34, 4 (1992), 469–475.
[3] Santosh Balajee Banisetty and Tom Williams. 2021. Implicit communication through social distancing: Can social

navigation communicate social norms?. In Proceedings of the Companion of the 2021 ACM/IEEE International Conference
on Human-Robot Interaction.

[4] Kimberly A. Barchard, Leiszle Lapping-Carr, R. Shane Westfall, Andrea Fink-Armold, Santosh Balajee Banisetty, and
David Feil-Seifer. 2020. Measuring the perceived social intelligence of robots. ACM Transactions on Human-Robot
Interaction 9, 4 (Sep. 2020), 1–29.

[5] Christoph Bartneck, Tony Belpaeme, Friederike Eyssel, Takayuki Kanda, Merel Keijsers, and Selma Sabanović. 2020.
Human-Robot Interaction: An Introduction. Cambridge University Press.

[6] Terry K. Borsook and Nancy Higginbotham-Wheat. 1991. Interactivity: What is it and what can it do for computer-
based instruction? Educational Technology 31, 10 (1991), 11–17.

[7] Wolfram Burgard, Armin B. Cremers, Dieter Fox, Dirk Hähnel, Gerhard Lakemeyer, Dirk Schulz, Walter Steiner, and
Sebastian Thrun. 1999. Experiences with an interactive museum tour-guide robot. Artificial Intelligence 114, 1–2 (1999),
3–55.

[8] Colleen M. Carpinella, Alisa B. Wyman, Michael A. Perez, and Steven J. Stroessner. 2017. The Robotic Social Attributes
Scale (RoSAS): Development and Validation. In Proceedings of the 2017 ACM/IEEE International Conference on Human-
Robot Interaction.

[9] Sonia Chernova, Jeff Orkin, and Cynthia Breazeal. 2010. Crowdsourcing hri through online multiplayer games. In
Proceedings of the 2010 AAAI Fall Symposium Series.

[10] Filipa Correia, Samuel Gomes, Samuel Mascarenhas, Francisco S. Melo, and Ana Paiva. 2020. The dark side of
embodiment teaming up with robots VS disembodied agents. In Proceedings of the Robotics: Science and Systems 2020.

[11] Kelly Cuccolo, Megan S. Irgens, Martha S. Zlokovich, Jon Grahe, and John E. Edlund. 2021. What crowdsourcing can
offer to cross-cultural psychological science. Cross-Cultural Research 55, 1 (2021), 3–28.

[12] Andrea Deublein and Birgit Lugrin. 2020. (Expressive) social robot or tablet? – On the benefits of embodiment and
non-verbal expressivity of the interface for a smart environment. In Proceedings of the International Conference on
Persuasive Technology.

[13] Anca D. Dragan, Kenton C. T. Lee, and Siddhartha S. Srinivasa. 2013. Legibility and predictability of robot motion. In
Proceedings of the 8th ACM/IEEE International Conference on Human-robot interaction.

[14] Gilberto Echeverria, Séverin Lemaignan, Arnaud Degroote, Simon Lacroix, Michael Karg, Pierrick Koch, Charles Lesire,
and Serge Stinckwich. 2012. Simulating complex robotic scenarios with MORSE. In Proceedings of the Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR ’12). Springer.

[15] David Feil-Seifer, Kerstin S. Haring, Silvia Rossi, Alan R. Wagner, and Tom Williams. 2020. Where to next? The impact
of COVID-19 on human-robot interaction research. ACM Transactions on Human-Robot Interaction 10, 1 (2020), 1–7.

[16] Kerstin Fischer, Katrin Lohan, and Kilian Foth. 2012. Levels of embodiment: Linguistic analyses of factors influencing
HRI. In Proceedings of the 7th Annual ACM/IEEE International Conference on Human-Robot Interaction.

[17] Susan T. Fiske, Amy J. C. Cuddy, and Peter Glick. 2007. Universal dimensions of social cognition: Warmth and
competence. Trends in Cognitive Sciences 11, 2 (2007), 77–83.

[18] Yuxiang Gao and Chien-Ming Huang. 2022. Evaluation of socially-aware robot navigation. Frontiers in Robotics and
AI 8 (2022). DOI: https://doi.org/10.3389/frobt.2021.721317

[19] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical
and theoretical research. Advances in Psychology 52 (1988), 139–183.

[20] Edward Twitchell Hall. 1966. The Hidden Dimension. Vol. 609. Anchor.

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 4, Article 60. Publication date: October 2024.

https://doi.org/10.3389/frobt.2021.721317


Influence of Simulation and Interactivity on Human Perceptions of a Robot 60:17

[21] Guy Hoffman, Jodi Forlizzi, Shahar Ayal, Aaron Steinfeld, John Antanitis, Guy Hochman, Eric Hochendoner, and
Justin Finkenaur. 2015. Robot presence and human honesty: Experimental evidence. In Proceedings of the 10th Annual
ACM/IEEE International Conference on Human-Robot Interaction.

[22] Guy Hoffman and Wendy Ju. 2014. Designing robots with movement in mind. Journal of Human-Robot Interaction 3, 1
(2014), 91–122.

[23] Guy Hoffman and Xuan Zhao. 2020. A primer for conducting experiments in human–robot interaction. ACM Transac-
tions on Human-Robot Interaction 10, 1 (2020), 1–31.

[24] Yuhan Hu and Guy Hoffman. 2019. Using skin texture change to design emotion expression in social robots. In
Proceedings of the 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE.

[25] Helge Hüttenrauch, Kerstin Severinson Eklundh, Anders Green, and Elin A. Topp. 2006. Investigating spatial relation-
ships in human-robot interaction. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE.

[26] Patrik Jonell, Taras Kucherenko, Ilaria Torre, and Jonas Beskow. 2020. Can we trust online crowdworkers?. In
Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents.

[27] Michiel Joosse, Manja Lohse, and Vanessa Evers. 2015. Crowdsourcing culture in HRI: lessons learned from quantitative
and qualitative data collections. In Proceedings of the 3rd International Workshop on Culture Aware Robotics at ICSR.

[28] Younbo Jung and KwanMin Lee. 2004. Effects of physical embodiment on social presence of social robots. In Proceedings
of the Presence.

[29] Daphne E. Karreman, Geke D. S. Ludden, and Vanessa Evers. 2019. Beyond R2D2: Designing multimodal interaction
behavior for robot-specific morphology. ACM Transactions on Human-Robot Interaction 8, 3 (2019), 1–32.

[30] Christian U. Krägeloh, Jaishankar Bharatharaj, Senthil Kumar Sasthan Kutty, Praveen Regunathan Nirmala, and
Loulin Huang. 2019. Questionnaires to measure acceptability of social robots: a critical review. Robotics 8, 4 (2019), 88.

[31] Minae Kwon, Erdem Biyik, Aditi Talati, Karan Bhasin, Dylan P Losey, and Dorsa Sadigh. 2020. When humans aren’t
optimal: Robots that collaborate with risk-aware humans. In Proceedings of the 2020 ACM/IEEE International Conference
on Human-Robot Interaction. IEEE.

[32] Minae Kwon, Sandy H. Huang, and Anca D. Dragan. 2018. Expressing robot incapability. In Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction.

[33] Alexis Lambert, Nahal Norouzi, Gerd Bruder, and Gregory Welch. 2020. A systematic review of ten years of research
on human interaction with social robots. International Journal of Human-Computer Interaction 36, 1 (2020), 1–14.

[34] Kwan Min Lee, Younbo Jung, Jaywoo Kim, and Sang Ryong Kim. 2006. Are physically embodied social agents better
than disembodied social agents?: The effects of physical embodiment, tactile interaction, and people’s loneliness in
human–robot interaction. International Journal of Human-Computer Studies 64, 10 (2006), 962–973.

[35] Séverin Lemaignan, Marc Hanheide, Michael Karg, Harmish Khambhaita, Lars Kunze, Florian Lier, Ingo Lütkebohle,
and Grégoire Milliez. 2014. Simulation and HRI recent perspectives with the MORSE simulator. In Proceedings of the
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR ’14). Springer.

[36] Michael Lewis, JijunWang, and Stephen Hughes. 2007. USARSim: Simulation for the study of human-robot interaction.
Journal of Cognitive Engineering and Decision Making 1, 1 (2007), 98–120.

[37] Jamy Li. 2015. The benefit of being physically present. International Journal of Human-Computer Studies 77 (2015),
23–37.

[38] Rui Li, Marc van Almkerk, Sanne van Waveren, Elizabeth Carter, and Iolanda Leite. 2019. Comparing human-robot
proxemics between virtual reality and the real world. In Proceedings of the 14th ACM/IEEE International Conference on
Human-Robot Interaction.

[39] David V. Lu, Dave Hershberger, and William D. Smart. 2014. Layered costmaps for context-sensitive navigation. In
Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 709–715.

[40] Ratnesh Madaan, Nicholas Gyde, Sai Vemprala, Matthew Brown, Keiko Nagami, Tim Taubner, Eric Cristofalo, Davide
Scaramuzza, Mac Schwager, and Ashish Kapoor. 2020. Airsim drone racing lab. In Proceedings of the Neurips 2019
Competition and Demonstration Track. PMLR.

[41] Maxim Makatchev, Reid Simmons, Majd Sakr, and Micheline Ziadee. 2013. Expressing ethnicity through behaviors of
a robot character. In Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction.

[42] Ali Mollahosseini, Hojjat Abdollahi, Timothy D. Sweeny, Ron Cole, and Mohammad H. Mahoor. 2018. Role of
embodiment and presence in human perception of robots’ facial cues. International Journal of Human-Computer
Studies 116 (2018), 25–39.

[43] Amal Nanavati, Xiang Zhi Tan, Joe Connolly, and Aaron Steinfeld. 2019. Follow the robot: Modeling coupled human-
robot dyads during navigation. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 3836–3843.

[44] Stefanos Nikolaidis, Anton Kuznetsov, David Hsu, and Siddhartha Srinivasa. 2016. Formalizing human-robot mutual
adaptation: A bounded memory model. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-
Robot Interaction (HRI).

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 4, Article 60. Publication date: October 2024.



60:18 N. Tsoi et al.

[45] Ali Noormohammadi-Asl, Kevin Fan, Stephen L. Smith, and Kerstin Dautenhahn. 2024. Human leading or following
preferences: Effects on human perception of the robot and the human-robot collaboration. arXiv:2401.01466. Retrieved
from https://arxiv.org/abs/2401.01466

[46] Aude Olivia, Michael L. Mack, Mochan Shrestha, and Angela Peeper. 2004. Identifying the perceptual dimensions of
visual complexity of scenes. In Proceedings of the Annual Meeting of the Cognitive Science Society , Vol. 26.

[47] Valerio Ortenzi, Akansel Cosgun, Tommaso Pardi, Wesley P. Chan, Elizabeth Croft, and Dana Kulić. 2021. Object
handovers: A review for robotics. IEEE Transactions on Robotics 37, 6 (2021), 1855–1873.

[48] H. D. Patterson and R. Thompson. 1975. Maximum likelihood estimation of components of variance. In Proceedings of
the 8th International Biometric Conference.

[49] Ashwini Pokle, Roberto Martín-Martín, Patrick Goebel, Vincent Chow, Hans M. Ewald, Junwei Yang, Zhenkai Wang,
Amir Sadeghian, Dorsa Sadigh, Silvio Savarese, and Marynel Vázquez. 2019. Deep local trajectory replanning and
control for robot navigation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA).

[50] Louise Poubel. [n.d.]. Service Robot Simulator . Retrieved from https://github.com/osrf/servicesim
[51] Carolyn C. Preston and Andrew M. Colman. 2000. Optimal number of response categories in rating scales: reliability,

validity, discriminating power, and respondent preferences. Acta Psychologica 104, 1 (2000), 1–15.
[52] Laurel D. Riek, Tal-Chen Rabinowitch, Paul Bremner, Anthony G. Pipe, Mike Fraser, and Peter Robinson. 2010.

Cooperative gestures: Effective signaling for humanoid robots. In Proceedings of the 5th ACM/IEEE International
Conference on Human-Robot Interaction.

[53] Stephanie Rosenthal, Joydeep Biswas, and Manuela M. Veloso. 2010. An effective personal mobile robot agent through
symbiotic human-robot interaction. In Proceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), Vol. 10. 915–922.

[54] Nicole Salomons, TomWallenstein, Debasmita Ghose, and Brian Scassellati. 2022. The impact of an in-home co-located
robotic coach in helping people make fewer exercise mistakes. In Proceedings of the 2022 31st IEEE International
Conference on Robot and Human Interactive Communication (RO-MAN).

[55] Gary W. Selnow. 1988. Using interactive computer to communicate scientific information. American Behavioral
Scientist 32, 2 (1988), 124–135.

[56] Stela H. Seo, Denise Geiskkovitch, Masayuki Nakane, Corey King, and James E. Young. 2015. Poor thing! Would you
feel sorry for a simulated robot? A comparison of empathy toward a physical and a simulated robot. In Proceedings of
the 10th Annual ACM/IEEE International Conference on Human-Robot Interaction. IEEE.

[57] Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz, Alan Schultz, and Michael Goodrich.
2006. Common metrics for human-robot interaction. In Proceedings of the 1st ACM SIGCHI/SIGART Conference on
Human-Robot Interaction.

[58] Megan Strait, Cody Canning, and Matthias Scheutz. 2014. Let me tell you! investigating the effects of robot com-
munication strategies in advice-giving situations based on robot appearance, interaction modality and distance. In
Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction. 479–486.

[59] Leila Takayama, Doug Dooley, and Wendy Ju. 2011. Expressing thought: Improving robot readability with animation
principles. In Proceedings of the 6th International Conference on Human-Robot Interaction.

[60] Mohsen Tavakol and Reg Dennick. 2011. Making sense of Cronbach’s alpha. International Journal of Medical Education
2 (2011), 53.

[61] Sam Thellman, Annika Silvervarg, Agneta Gulz, and Tom Ziemke. 2016. Physical vs. virtual agent embodiment and
effects on social interaction. In Proceedings of the Intelligent Virtual Agents (IVA ’16).

[62] Russell Toris, David Kent, and Sonia Chernova. 2014. The robot management system: A framework for conducting
human-robot interaction studies through crowdsourcing. Journal of Human-Robot Interaction Steering Committee 3, 2
(2014), 25–49.

[63] Joanne Truong, Max Rudolph, Naoki Yokoyama, Sonia Chernova, Dhruv Batra, and Akshara Rai. 2022. Rethinking
Sim2Real: Lower fidelity simulation leads to higher Sim2Real transfer in navigation. arXiv:2207.10821. Retrieved from
https://arxiv.org/abs/2207.10821

[64] Nathan Tsoi, Mohamed Hussein, Jeacy Espinoza, Xavier Ruiz, and Marynel Vázquez. 2020. SEAN: Social environment
for autonomous navigation. In Proceedings of the 8th International Conference on Human-Agent Interaction.

[65] Nathan Tsoi, Mohamed Hussein, Olivia Fugikawa, J. D. Zhao, and Marynel Vazquez. 2021. An approach to deploy
interactive robotic simulators on the web for HRI experiments: Results in social robot navigation. In Proceedings of
the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[66] Nathan Tsoi, Alec Xiang, Peter Yu, Samuel S. Sohn, Greg Schwartz, Subashri Ramesh, Mohamed Hussein, Anjali W.
Gupta, Mubbasir Kapadia, and Marynel Vázquez. 2022. SEAN 2.0: Formalizing and generating social situations for
robot navigation. IEEE Robotics and Automation Letters 7, 4 (2022), 11047–11054.

[67] Gentiane Venture and Dana Kulić. 2019. Robot expressive motions: a survey of generation and evaluation methods.
ACM Transactions on Human-Robot Interaction 8, 4 (2019), 1–17.

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 4, Article 60. Publication date: October 2024.

https://arxiv.org/abs/2401.01466
https://github.com/osrf/servicesim
https://arxiv.org/abs/2207.10821


Influence of Simulation and Interactivity on Human Perceptions of a Robot 60:19

[68] Joshua Wainer, David J. Feil-Seifer, Dylan A Shell, and Maja J. Mataric. 2006. The role of physical embodiment in
human-robot interaction. In Proceedings of the 15th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN ’06).

[69] JoshuaWainer, David J. Feil-Seifer, Dylan A Shell, andMaja J. Mataric. 2007. Embodiment and human-robot interaction:
A task-based perspective. In Proceedings of the 6th IEEE International Symposium on Robot and Human Interactive
Communication (RO-MAN).

[70] Manhua Wang, Seul Chan Lee, Harsh Kamalesh Sanghavi, Megan Eskew, Bo Zhou, and Myounghoon Jeon. 2021.
In-vehicle intelligent agents in fully autonomous driving: The effects of speech style and embodiment together and
separately. In Proceedings of the 13th International Conference on Automotive User Interfaces and Interactive Vehicular
Applications.

[71] Ning Wang, David V Pynadath, and Susan G Hill. 2016. Trust calibration within a human-robot team: Comparing
automatically generated explanations. In Proceedings of the 11th ACM/IEEE International Conference on Human Robot
Interaction. IEEE.

[72] Sarah N. Woods, Michael L. Walters, Kheng Lee Koay, and Kerstin Dautenhahn. 2006. Methodological issues in HRI:
A comparison of live and video-based methods in robot to human approach direction trials. In Proceedings of the 15th
IEEE International Symposium on Robot and Human Interactive Communication.

[73] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Micael Edmond Tchapmi, Alexander Toshev, Roberto Martín-
Martín, and Silvio Savarese. 2020. Interactive Gibson benchmark: A benchmark for interactive navigation in cluttered
environments. IEEE Robotics and Automation Letters 5, 2 (2020), 713–720.

[74] Mohammad Abu Yousuf, Yoshinori Kobayashi, Yoshinori Kuno, Akiko Yamazaki, and Keiichi Yamazaki. 2012. De-
velopment of a mobile museum guide robot that can configure spatial formation with visitors. In Proceedings of the
Intelligent Computing Technology (ICIC ’12). Springer.

[75] Jakub Złotowski, Astrid Weiss, and Manfred Tscheligi. 2012. Navigating in public space: Participants’ evaluation
of a robot’s approach behavior. In Proceedings of the 2012 7th ACM/IEEE International Conference on Human-Robot
Interaction (HRI).

Received 6 February 2023; revised 20 June 2024; accepted 25 June 2024

ACM Transactions on Human-Robot Interaction, Vol. 13, No. 4, Article 60. Publication date: October 2024.


	Abstract
	1 Introduction 
	2 Related Work  
	2.1 Video-Based Evaluation in HRI 
	2.2 Simulation in HRI 
	2.3 Physical Robot Embodiment and Presence 

	3 Method 
	3.1 Hypotheses 
	3.2 Participants 
	3.3 Setup 
	3.4 Procedure 
	3.5 Dependent Measures 
	3.6 Analysis 

	4 Results 
	4.1 Perceptions of the Robot 
	4.2 Perceived Workload 

	5 Discussion 
	6 Limitations 
	7 Guidelines for Methodology Selection 
	8 Conclusion 
	References

