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ABSTRACT 
Humans expect robots to learn from their feedback and adapt to 
their preferences. However, there are limitations with how humans 
provide feedback to robots, e.g., humans may give less feedback as 
interactions progress. Therefore, it would be advantageous if robots 
could infuence humans to provide more feedback during interac-
tions. We conducted a 2x2 between-subjects user study (� = 71) to 
investigate whether the framing and timing of a robot’s reminder 
to provide feedback could infuence human interactants. Human-
robot interactions took place in the context of Space Invaders, a 
fast-paced and continuous collaborative environment. Our results 
suggest that reminders can infuence the amount of feedback hu-
mans provide to robots, how participants feel about the robot, and 
how they feel about providing feedback during the interaction. 
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• Human-centered computing → Empirical studies in collab-
orative and social computing; Empirical studies in HCI. 
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1 INTRODUCTION 
Human-Robot Interaction (HRI) has long acknowledged the impor-
tance of creating robots that can adapt to individual preferences 
[2, 70], which are often learned through human feedback [21]. Re-
search has investigated robot adaptation in a variety of settings, 
such as while collaboratively building a toolbox [54], during tu-
toring sessions [18], or in prehabilitation exercises [80]. Common 
types of feedback in robot learning include evaluative feedback 
[46], demonstrations [66], corrections [5], and comparisons [61]. 

Unfortunately, there are shortcomings in how humans naturally 
provide feedback [16, 53, 72]. Notably, humans tend to give less 
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Figure 1: Experimental setup for our study. 

feedback as an interaction progresses [52]. Also, research suggests 
that users tend to stop providing feedback once they are satisfed 
with an agent’s performance [39]. As robots enter more collabora-
tive interactions, humans will likely provide even less feedback if 
they are preoccupied with their own actions. 

In situations where humans are not providing enough feedback 
during an interaction, a robot could remind them to provide feed-
back. This strategy could work well because robots can infuence 
human behavior, as demonstrated in a wide range of work (e.g., 
[19, 24, 27, 34, 48, 65]). However, it then becomes essential that the 
robot does not annoy the human with reminders, thus making it 
important to understand how to make the reminders impactful. 

We conducted a study to investigate how robots should remind 
humans to give evaluative feedback in fast-paced, cooperative in-
teractions. Participants played a collaborative game with a robot, as 
shown in Fig. 1. The novelty of this interaction setup was twofold. 
First, the game was a continuous task, more similar to autonomous 
driving [62] than more typical turn-based interactions in collab-
orative robotics [22, 55, 68]. Second, the human interactant had 
additional objectives other than solely providing feedback to the 
robot (as is common in robot learning [4, 12, 13, 36, 47]). Overall, 
the interaction was naturalistic from the perspective that both the 
human and robot were busy with their own agenda. 

Our study focused on investigating two factors that could in-
fuence humans receiving feedback reminders from robots: 1) the 
framing of the robot’s utterances (highlighting the robot individ-
ually or its human-robot team); and 2) the timing of reminders 
(relative to a situation in which the robot changed its behavior 
in the game). Our results suggest that highlighting the individual 
robot versus the human-robot team in reminders can infuence how 
participants feel about the robot and about providing feedback dur-
ing the interaction. Also, the timing of reminders can impact when 
participants provide feedback about the robot’s performance. Our 
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work provides interesting insights on how to design robots that 
learn from humans in realistic, continuous collaboration scenarios. 

2 BACKGROUND 
Research has investigated robots that request feedback from hu-
mans, including what kind of queries to ask [9, 12, 26], how often 
to query a user [10], or how to account for a human’s ability to 
provide useful information [8]. Further, Ho et al. [33] studied how 
to build mental models of humans to determine how to ask for feed-
back, and Jeon et al. [40] provided a framework to enable agents 
to combine multiple types of feedback. This line of work often 
investigates turn-based tasks and/or users that are only focused on 
providing feedback (e.g., [12, 68]). To complement this research, we 
study general reminders for feedback in continuous collaborations. 
This is important because the time when a robot asks for feedback 
is not necessarily the best time for the human to provide feedback. 

To the best of our knowledge, general feedback reminders have 
not been explicitly studied before in HRI; nevertheless, prior work 
provides insights on trade-ofs when requesting feedback. For ex-
ample, robots must be able to ask for feedback without annoying 
the human [31] or asking too many questions [79]. Thus, robots 
have the difcult task of ensuring requests or reminders for input 
are frequent enough to be useful, but not too incessant [7]. One 
approach is to identify opportune times for interruptions [1], such 
as by modeling user attention [43]. It is also important to try to 
maximize the beneft from an interruption when a disruption is 
necessary. Thus, another approach is to study the way in which 
robots should remind humans to provide feedback most efciently. 

While current work typically studies how to leverage the ways 
in which humans naturally communicate when teaching a robot 
[15, 25, 42, 71], we are interested in understanding if robots can 
infuence how much feedback humans provide. Close to our work, 
Rogers and Howard [59] found that an agent’s embodiment in-
fuenced how much reward or punishment humans provided in a 
fnancial advisement scenario. Additionally, there is evidence that 
people provide more frequent feedback when an agent chooses bad 
actions [45]. However, our goal is to elicit more feedback without 
harming performance. The next sections describe related work on 
two specifc aspects of feedback reminders relevant to our study. 
Robot Framing in Communication: Robot communicative sig-
nals are able to infuence human actions and perceptions of a ro-
bot (e.g., in one-on-one settings [24, 34, 58, 65, 81] and in groups 
[19, 23, 27, 48, 67]). One interesting aspect of robot communica-
tion is how the robot frames itself relative to others. For exam-
ple, whether a robot framed itself as competitive or relationship-
oriented impacted how much participants looked at and supported 
the robot in a card game [56]. Additionally, how a robot attributed 
blame amongst a group infuenced how much humans trusted the 
robot [29, 41, 76]. Close to our work, Salomons et al. [63] found that 
whether the robot referred to itself as a peer or as a teacher afected 
how much humans learned over the course of an interaction. This 
corpus of work inspired us to investigate: 
Research Question 1: Will framing feedback in a reminder as help-
ing the team versus helping the individual robot infuence how humans 
provide feedback or feel about the interaction? 

Timing of Robot Actions: Another important factor of reminders 
is timing. Timing can be critical in human-robot communication 
[17]. For instance, the time when a robot helps a human can impact 
the human’s perception of the robot [6]. The timing of robot actions 
can also afect the fuency of human-robot interactions [11, 38]. 
Consequently, we asked: 
Research Question 2: How does the timing of a feedback request 
infuence when the human provides feedback? 

Because prior work has shown that humans not only provide 
feedback in response to past actions, but also to guide future be-
havior [44, 71], we investigated the above question in relation to 
an important change in robot behavior during interactions. 

3 INTERACTION TASK: SPACE INVADERS 
Typically, when a robot learns from a human, the human’s only ob-
jective is to teach the robot (e.g., [46, 64, 73]). Also, tasks are usually 
turn-based, where the robot takes an action and then waits for the 
human to provide feedback [77]. However, everyday interactions 
are more fast-paced and involve competing priorities. Thus, we 
chose to study feedback reminders in a two-player Space Invaders 
game, requiring continuous and fast-paced decision-making and 
action. The game was inspired by prior work on ad-hoc cooperation 
[49] and unexpected help from a virtual agent [14]. 

In our version of Space Invaders, a human controlled a purple 
spaceship that spawned on the left side of the game screen and the 
robot controlled the spaceship that spawned on the right side (Fig. 
1). Rows of enemies appeared at the top of the screen and moved 
downwards until they were destroyed or reached the bottom of the 
screen. The participant and robot had one team score and received 
points for destroying enemies. Both players started the game with 
four lives and lost a life when they collided with an enemy or a 
bullet. The game ended when all enemies were destroyed, when 
both players lost all their lives, or when an enemy reached the 
bottom of the screen. 

The participant used the right and left arrow keys to move within 
the bounds of the screen and pressed the spacebar to shoot. They 
provided explicit, evaluative feedback to the robot by pressing the 
up arrow (positive feedback) or down arrow (negative feedback) 
on their keyboard. When participants pressed the up or down ar-
rows, “good job” or “bad job” text appeared on the screen to ensure 
participants were aware that their feedback was received. 
Robot Gameplay Strategies. Space Invaders allowed us to create 
three visually diferent gameplay strategies for the robot’s space-
ship based on when the spaceship travelled to the left side of the 
screen (the participant’s side). The strategies helped familiarize par-
ticipants with the game dynamics and study the efects of timing 
on feedback requests. 
1) Uncooperative strategy: The robot only destroyed enemies on the 
right side of the screen. Because the robot could shoot slightly faster 
than the human, the robot always destroyed all of the enemies on its 
own side before the participant destroyed the enemies on their side. 
Once all of the enemies on the right side were destroyed, the robot 
waited for the participant to fnish destroying the enemies on the 
left side. For games in which the robot utilized the uncooperative 
strategy, the robot’s spaceship was dark grey, as shown in Fig. 2(a). 
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Figure                  
and 4. The frst image shows the game instructions that were shown to the participant before each round of Space Invaders 
(best viewed in digital form). The other images show the three gameplay strategies for the robot’s spaceship, as described in Sec. 
3. The robot’s spaceship was dark grey (a), white (b), or light grey (c). The bottom set of blocks shows the state of the robot. 

next, persisted in later interactions. These three gameplay strate-
gies were intended to highlight changes in the robot’s behavior, 
rather than being independent variables themselves. 

4.1 Study Design 
To investigate the research questions outlined in Sec. 2, we designed 
a 2x2 between-subject study with Framing (Individual vs. Team) 
and Timing (Before vs. After) as independent variables. The robot 
reminded the participant to provide feedback once in the third 
and fourth games of Space Invaders experienced in the study. The 
feedback reminders varied by: 
Framing of utterances: We varied how the robot verbally referred 
to itself during gameplay using “I” vs. “we” pronouns. With the In-
dividual framing, the robot referred to itself using the frst-person, 
singular pronoun “I”, e.g., “I’m ready to play” and “Remember to 
give feedback so I am a better player!” These utterances referred 
to the individual robot and focused the reminder on improving 
its gameplay. With the Team framing, the robot referred to itself 
using the frst-person, plural pronoun “we”, e.g., “We’re ready to 
play” and “Remember to give feedback so we are a better team!” 
In the Team framing, the reminder was focused on improving the 
human-robot team, rather than the individual robot. 
Timing of the reminder: We also varied when the robot reminded 
the participant to give feedback relative to changing its gameplay 
behavior. In particular, the robot’s spaceship began playing Space 
Invaders on the right side of the screen. At three diferent points 
during the early-cooperative games, the robot’s spaceship crossed 
over to the left side of the screen in order to help the participant. 
Our manipulation focused on the frst of the robot’s visits to the left 
side of the screen in both games 3 and 4. As explained in Sec. 3, the 
frst crossover was announced with “Look we/I are/am destroying 
enemies on the left side of the screen!” With the Before reminder, 
the robot reminded the participant to give feedback before its space-
ship crossed over to their side of the screen and announced the new 

2) Early-cooperative strategy: The robot went over to the left side of 
the game screen to help the participant destroy enemies on three 
visits during the game. For games in which the robot utilized this 
strategy, the robot’s spaceship was white, as shown in Fig. 2(b). 

The frst visit to the participant’s side of the screen was central 
to our study manipulations. When using the early-cooperative 
strategy, the robot emphasized the frst visit by announcing “Look 
we/I are/am destroying enemies on the left side of the screen!” We 
wanted to ensure that participants noticed that the robot moved to 
the left side of the screen, exhibiting a new gameplay behavior. 
3) Late-cooperative strategy: The robot only went over to the left 
side of the game screen to help destroy enemies after all of the 
enemies on the right side were destroyed. For games in which the 
robot utilized this strategy, the robot’s spaceship was light grey. Fig. 
2(c) depicts the late-cooperative strategy. 
Implementation. We implemented the game with browser-based 
client technologies and a Python server. We used the Robot Oper-
ating System (ROS) [57] to provide game information to the robot. 
The supplementary material provides more implementation details. 

4 METHOD 
We conducted a user study to investigate the efects of how and 
when a robot reminded a participant to give feedback about the 
robot’s behavior. Participants played six games of Space Invaders 
with a Nao robot, as in the timeline of Fig. 2. The participants 
were asked to help train the robot to be a good teammate by pro-
viding positive and negative feedback. The robot exhibited three 
diferent gameplay strategies, each for two games: uncooperative, 
early-cooperative, and late-cooperative (as described in Sec. 3). The 
uncooperative robot strategy served to familiarize participants with 
the game while playing with the robot. The early-cooperative strat-
egy was the main focus of our study. The robot only reminded 
participants to provide feedback to the robot in these two games. 
The late-cooperative strategy was included in our study to evaluate 
if efects of our experimental manipulations, which are explained 

2: Experiment timeline. The robot reminded participants to provide feedback about the robot’s performance in games 3
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behavior. With the Afer reminder, the robot’s spaceship crossed 
over to participant’s side of the screen, announced the new behav-
ior, and then reminded the participant to give feedback once it was 
back on the right side of the screen. 

The text bubbles and timelines in Fig. 3 illustrate the diference 
between the Before and After reminders for the Team framing. See 
our supplementary video for examples of experimental conditions. 

4.2 Hypotheses 
We hypothesized that our independent variables would have an 
efect on when participants provided feedback during the collabo-
ration, and on how they reported feeling about the robot and the 
interaction. Specifcally, in response to RQ1, we hypothesized: 
H1a. Humans will give more feedback during the interaction with 
the Team framing than with the Individual framing. 
H1b. Humans will feel more positive about giving feedback and 
about the robot with the Team framing than the Individual framing. 
H1a and H1b were motivated by the psychology literature. By 
using the “we” pronoun, the robot stressed that the participant 
and the robot belonged to the same group. These feelings of group 
membership have been found to increase helping behaviors [51] 
and perceived responsibility for helping [50]. In our study, the 
participant helped the robot by providing feedback so that the robot 
could learn to be a better teammate in the future. Further, prior 
HRI work found that participants perceived a robot that expressed 
group-based emotions as more likeable and trustworthy than a 
robot that expressed individual-based emotions [20]. 
With respect to RQ2, we hypothesized: 
H2a. Humans will give more feedback with the Before reminder 
than with the After reminder. 
H2b. Humans will give feedback more quickly with the After re-
minder than with the Before reminder. 
H2a and H2b were motivated by prior work on robots guiding 
human attention [35, 69, 82]. Also, humans provide feedback both 
in response to past actions and to guide future behavior [44, 71]. 

4.3 Setup 
The experiment was conducted in a small ofce on a university 
campus in the United States. The room contained a table with a 
computer screen and a tablet. The participant sat in an ofce chair 
facing the computer screen, and the robot was on the table next to 
the participant. The physical setup is illustrated in Fig. 1. 

We used the Nao robot by Softbank Robotics for our study. Nao is 
a humanoid robot. It is 22.6 inches tall, though it sat for the entirety 
of our study. The Nao was fully autonomous and controlled by the 
Python SDK for Naoqi on a computer running ROS. The robot spoke 
to the participant on set occasions throughout the interaction. We 
implemented a basic idling behavior where the Nao moved its head 
slightly every eight to ffteen seconds during the Space Invaders 
games so that it would seem attentive and engaged. 

4.4 Procedure 
Fig. 2 summarizes the sequence of events in a study session. After 
giving informed consent, participants flled out the pre-interaction 

demographics survey, which also included personality data via 
the Ten Item Personality Measure (TIPI) [28] and the Berkeley 
Expressivity Questionnaire (BEQ) [30]. 

The experimenter then instructed the participant to enter the 
ofce, sit at the computer, and complete a webcam check to ensure 
that the recording was working. Next, the experimenter explained 
the setup and controls for the Space Invaders game, including how 
to give positive or negative feedback to the robot. The participant 
was told the robot was still of, so the robot’s spaceship would not 
move or shoot during the tutorial that followed. The experimenter 
stayed in the room while the participant completed the tutorial. 

After the tutorial, the experimenter asked the participant to help 
train the robot and reminded the participant that the robot was 
their teammate. The experimenter stated: “The robot already knows 
how to play the game, but not how to be a good teammate to you. 
You should give the robot feedback so that it learns to play in the way 
you like.” Participants were informed that the robot would not be 
adjusting its behavior based on feedback provided during the game, 
but that feedback would be used to improve robot behaviors in the 
future. The experimenter instructed the participant to turn on the 
robot, and the robot introduced itself. The participant then began 
the frst game of Space Invaders with the robot. 

The participant played six games of Space Invaders in total. One 
game of Space Invaders took on average 96.15 seconds (�� = 0.69). 
The frst two games were with the uncooperative strategy, the 
middle two games were with the early-cooperative strategy, and 
the last two games were with the late-cooperative strategy. After 
each pair of games with a specifc strategy, the participant answered 
a brief set of post-strategy survey questions. Finally, the participant 
answered a set of survey questions about the entire interaction. In 
order to reduce the likelihood that the participant interacted with 
the robot while answering survey questions, the robot stated “I’m 
going to take a nap now while you answer some questions.” 

At the end of the study, participants were compensated US$10. 
The interaction lasted approximately 35 minutes. The protocol was 
reviewed by our Institutional Review Board and refned via pilots. 

4.5 Dependent Measures 
We considered both objective and subjective measures in our study. 
For analysis of participant-provided feedback, we analyzed game 
logs for up and down button presses. Important game events in-
cluded when the Before and After reminders would have been 
and when the robot announced its new behavior. Unless otherwise 
noted, survey questions were scored on a 7-point agreement scale 
with 1 being “strongly disagree” and 7 being “strongly agree.” 
Rate of feedback: We calculated how many times participants 
provided feedback with button presses via game logs. To account 
for varying game length, we computed feedback signals per minute 
(fspm). We analyzed the rate of feedback across entire games, as 
well as in ten second windows after important events in games 3 
and 4, as depicted by the W measures in Fig. 3. 
Elapsed time to feedback: We analyzed the number of seconds 
from game events to when the participant next provided feedback 
with the up and down keys. Fig. 3 shows the elapsed time measures 
(E) we analyzed and how they difer between Timing conditions. 
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Figure 3: Robot behavior and related measures in the early-cooperative strategy (games 3 & 4) for the two timings of feedback 
(Before & After). Measures include ten-second windows (W) and elapsed time to next feedback press by participant (E) measures 
from game events. Italicized labels signify static measures across Timing conditions; non-italicized labels signify measures that 
difer across Timing conditions. Example shows Team framing, but measures were the same for Individual framing. 

Feedback process: After completing all six games, participants 
were asked a series of questions about the process of providing 
feedback. They provided free text responses and rated how strongly 
they agreed it was difcult or distracting to give feedback, and if 
they thought they were able to give the robot helpful feedback. 
Perceptions of Robot: After playing two games with each robot 
gameplay strategy, participants rated statements about the robot.
The statements included if the robot was helpful, profcient at the 
game, or annoying, and if the participant liked the robot’s behavior.

4.6 Participants 
Our study had a total of 72 participants, with 18 participants in each 
of the four conditions. One participant in the Team-Before condi-
tion was excluded because they continuously provided feedback 
in all rounds of Space Invaders and their survey responses were 
inconsistent with the provided instructions. Thus, our fnal partici-
pant pool had 71 total participants. Participants were recruited via 
fyers, online postings, and word of mouth. They were required to 
be at least 18 years of age, be fuent in English, and have normal or 
corrected-to-normal hearing and vision. 

Table 1 summarizes participant demographics. On average, par-
ticipants indicated using a computer daily (� = 1.08, �� = .50) 
and playing video games between once a week and once a month 
(� = 4.27, �� = 1.62). Specifc to Space Invaders, 21% reported 
playing the game before, 49% reported never having played the 
game, and 30% were not sure. The majority of participants (65%) 
reported that they interacted with robots less than once a month. 

4.7 Manipulation Checks 
4.7.1 Framing of uterances. In the fnal set of survey questions, we 
asked participants to rate the frequency that the robot referenced 
itself and the team (with 1 being “never” and 7 being “always”). We 
used a standard least squares model considering Framing, Timing, 
and their interaction as main efects. Participants in the Individual 

 

 

Table 1: Participant demographics by condition. 

Framing Timing N #Males #Females Age (�   �) 

Individual Before 18 8 10 23.78   6.11 
Individual After 18 9 9 26.50   9.70 
Team Before 17 8 9 23.82   4.57 
Team After 18 8 10 23.78   3.57 

All 71 33 38 24.48   6.42 

conditions stated that the robot referenced itself signifcantly more 
frequently (� = 4.61, �� = .26) than participants in the Team 
conditions (� = 2.54, �� = .26), � (1, 67) = 31.56, � < .0001. On 
the other hand, participants in the Individual conditions stated 
that the robot referenced the team signifcantly less frequently 
(� = 2.78, �� = 0.29) than participants in the Team conditions 
(� = 4.80, �� = 0.29), � (1, 67) = 24.63, � < .0001. These results 
suggest that our Framing manipulation was efective. 

4.7.2 Timing of reminders. After the third and fourth games of 
Space Invaders, the survey asked participants to identify when the 
robot reminded them to give feedback. In the Before conditions, 
68% of participants correctly answered “before the robot said that 
it was destroying enemies on the left side of the game screen”, 26% 
participants answered incorrectly, and 6% participants answered 
that they did not remember the ordering. In the After conditions, 
75% participants correctly answered “after the robot said that it was 
destroying enemies on the left side of the game screen”, 11% partic-
ipants answered incorrectly, and 14% participants answered that 
they did not remember the ordering. This suggests that our Timing 
manipulation was perceived efectively by most participants. 

Importantly, the diference in the Timing independent variable 
was not evident until games 3 and 4. However, an REML analysis 
showed that Timing had a signifcant efect on the rate at which par-
ticipants provided feedback in games 1 and 2 (� = .003), even though 
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this manipulation was not yet evident. This led us to investigate 
and identify four covariates through correlation analyses: amount 
of feedback provided in the tutorial (� (142) = .46, � < .0001), time 
to frst button press in frst game (� (142) = .33, � < .0001), par-
ticipant agreeableness (� (142) = −.31, � = .0002), and positive 
expressivity (� (142) = .19, � = .02). These covariates accounted for 
the diference by Timing in games 1 and 2. Therefore, all statistical 
analyses in Sec. 5 include these covariates. We also confrmed that 
signifcant diferences in the manipulation checks described for 
Timing and Framing persisted after the addition of the covariates. 

5 RESULTS 
This section presents our results based on the measures described 
in Sec. 4.5. Unless otherwise noted, we used linear mixed models 
estimated with Restricted Maximum Likelihood (REML) analyses 
[74] via JMP Pro [37] to statistically examine survey data and partic-
ipant feedback. In these analyses, Framing (Individual or Team) and 
Timing (Before or After) were considered as main efects, and partic-
ipant ID was a random efect. When the measures were repeated by 
game number or gameplay strategy, we included Game Number or 
Gameplay Strategy as a main efect. We also set our selected covari-
ates from Sec. 4.7.2 as fxed efects. We conducted post-hoc Tukey 
Honestly Signifcant Diference (HSD) tests or post-hoc Student’s 
t-tests as appropriate. 

5.1 Rate of Feedback 
First, we present results of analyzing the rate of feedback across all 
games and in specifc windows of time within games (as in Fig. 3). 

5.1.1 All games. Across all six games of Space Invaders, partici-
pants provided an average of 8 feedback signals per minute (fspm) 
(� = 8.02, �� = 0.71). This ranged from 0 to 160 fspm, with a me-
dian value of 4.04 fspm. A REML analysis, including Game Number 
as a main efect, showed no signifcant efects by Framing, Tim-
ing, or their interaction. The REML analysis did show a signifcant 
diference by Game Number, � (5, 340) = 2.33, � = 0.0423, but a 
post-hoc Tukey HSD test showed no signifcant diferences. When 
considering average feedback across the full length of the games, it 
is likely that diferences from our manipulations in games 3 and 4 
were diluted through the whole interaction. Thus, we also looked 
at the rate of feedback in specifc windows of time within games. 

5.1.2 Specific windows. As discussed in Sec. 4.1, the robot reminded 
participants to provide feedback during games 3 and 4. In the ten 
seconds after the reminder (WR), the rate of feedback varied signif-
cantly based on the Timing of the reminder, � (1, 63) = 5.71, � = .02, 
and on the Game Number, � (1, 68) = 7.43, � = .008. Participants 
provided more frequent feedback in WR when the reminder was 
Before the robot changed its behavior (� = 22.03, �� = 2.92) than 
After (� = 11.99, �� = 2.87), as shown in Fig. 4. Participants also 
provided more feedback in Game 3 (� = 19.78, �� = 2.24) than 
Game 4 (� = 14.24, �� = 2.24) in this window (WR). 

Because the window after the reminder (WR) had the robot’s 
spaceship in diferent parts of the game screen based on the Timing 
of the reminder, we evaluated the rate of feedback in other windows 
to further investigate the infuence of our manipulation. First, we 
compared the rate of feedback in the ten seconds after when the 
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Figure 4: Rate of feedback in three windows described in Fig. 
3 by Timing. Unit is feedback signals per minute (fspm). 

Before reminder would have been between the Timing conditions 
(WB), and found a signifcant diference, � (1, 63) = 13.38, � = .0005. 
Participants in the Before conditions provided more frequent feed-
back (� = 22.27, �� = 2.93) during this window than participants 
in the After conditions (� = 6.85, �� = 2.88) who did not receive 
the reminder at the start of this window (WB). For WB, the actions 
of the robot’s spaceship were consistent between Timing condi-
tions, so we can assume that the diference is due to the presence 
of the reminder in the Before conditions. Therefore, it is unlikely 
that the diference in the rate of feedback that we saw before for 
WR was due solely to the actions of the robot’s spaceship in the 
game, which difered between the ten seconds following the Before 
reminder and the After reminder. 

Second, we compared the rate of feedback in the ten seconds 
after the frst utterance (WU) and found a trend for Timing hav-
ing an efect on the results (p=.06). The participants in the Before 
conditions provided feedback at a rate of 21.74 fspm (�� = 3.11)
while participants in the After conditions had a rate of 13.10 fspm 
(�� = 3.07). This suggests that for WR, the increased amount of 
feedback with the Before conditions was not just due to the novelty 
of the robot speaking for the frst time in the Before conditions. 

Had the rate of feedback not been higher in WB with the Before 
reminder than without the Before reminder (due to the participant 
being in the After conditions), it could be argued that the Before re-
minder happened to occur at a point in the game when participants 
were inherently more likely to provide feedback. However, because 
participants with the Before reminders provided more feedback 
than participants with the After reminders in both WB and WR, we 
conclude that the Before reminder increased participants’ feedback. 

Timing did not have a signifcant efect on the rate of feedback 
during the second and third visits in the early-cooperative games, 
nor during the end of games 5 and 6, when it became evident 
that the robot had a new gameplay strategy. The Framing of robot 
utterances (Team vs. Individual) had no signifcant efect on the 
rate of feedback provided in any window-based measure. 

5.2 Elapsed Time to the Next Feedback 
We investigated if there were diferences in the elapsed time be-
tween when the robot reminded participants to give feedback and 
when participants next provided feedback via the up or down arrow 
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keys (ER). An REML analysis revealed a signifcant diference by 
Timing, � (1, 63.91) = 4.38, � = .04. Participants with the Before 
reminder (� = 3.24, �� = 1.03) provided feedback more quickly 
than with the After reminder (� = 6.35, �� = 1.02). There were no 
other signifcant efects on the ER measure. 

Similar to the secondary analyses for the rate of feedback in 
specifc windows, we again analyzed other elapsed-time measures 
to evaluate the infuence of our manipulation. First, we compared 
the elapsed time from when the Before reminder would have been 
across both conditions (EB). We found that the elapsed time varied 
signifcantly by Timing for the EB measure, � (1, 63.74) = 44.29, � < 
.0001. Participants with the Before reminders (� = 3.20, �� = 
.94) provided feedback signifcantly more quickly when the Before 
reminder was uttered than when the Before reminder was not 
uttered (because participants instead received the After reminder) 
(� = 12.23, �� = .92). This suggests that the reminder did infuence 
how quickly the participant provided feedback, and the diference 
observed for ER was not just due to the position of the robot’s 
spaceship, which was the same for both Timings in EB. Additionally, 
the interaction between Timing and Game Number had a signifcant 
efect on elapsed time to feedback in EB, � (1, 67.91) = 8.54, � = .005. 
The post-hoc test showed that Game 3 (� = 2.56, �� = 1.16) and 
Game 4 (� = 3.84, �� = 1.18) with the Before reminder led to faster 
feedback than Game 4 with the After reminder (� = 10.07, �� = 
1.14). Also, these three combinations (Before-3, Before-4, and After-
4) had signifcantly faster feedback than Game 3 (� = 14.39, �� = 
1.14) with the After reminder. 

Second, because the After reminder was the second utterance 
of the manipulation, we also conducted an REML analysis on the 
elapsed time between the robot’s frst utterance of the manipulation 
in games 3 and 4 and when the participant next provided feedback 
(EU). Again, there was a signifcant diference in the elapsed time 
by Timing, � (1, 63.76) = 13.93, � = .0004. Participants with the 
Before reminders (� = 3.33, �� = .84) provided feedback more 
quickly after the frst utterance than with the After reminders 
(� = 7.81, �� = .82). This result suggests that it was not only that 
participants responded to the robot saying something in the middle 
of the game, but that the reminder itself was important. There were 
no other signifcant diferences. 

5.3 Reasons for Providing Feedback 
Participants predominantly provided positive feedback to the robot: 
83.5% of all participant feedback across all six rounds of Space 
Invaders was positive. Participants were asked to select all reasons 
that they gave feedback. Reasons from most to least commonly 
selected were: “when the robot was on the left side of the screen” 
(87%), “when the robot was trying to help” (83%), “when the robot 
was on the right side of the game screen” (70%), “when the robot 
was not helping” (56%), “when the robot was not being efcient” 
(35%), “randomly” (30%), and “when the robot lost a life” (11%). 
Additionally, ten participants (14%) selected “Other”. When asked 
to elaborate on why they chose “Other”, nine of the ten participants 
provided another rationale for giving positive feedback. Of the nine, 
four participants said they provided feedback when the robot was 
performing better than they were. For example, P124 wrote “I would 
look over and see the robot had done a better job of destroying enemies 
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Figure 5: Participant agreement with “I liked the behavior 
of the robot in the game” (Liked), “The robot was profcient 
at the game” (Profcient) and “The robot was annoying” (An-
noying) on a 7-point responding format. 

than I did, and I gave it positive feedback based of of that.” The 
other fve positive reasons were not relative to the participant, but 
just that the robot was doing well in general, e.g., “when I saw it 
was shooting with high frequency” (P105) or “whenever it fnished 
clearing its side” (P186). The one negative reason that was provided 
was “when the robot was on the left side of the screen but there were 
still enemies on the right side of the screen” (P102). 

5.4 Perceptions of the Feedback Process 
We next analyzed post-interaction survey questions about the feed-
back process. The REML analysis showed that how strongly partic-
ipants agreed that the feedback they provided was helpful varied 
signifcantly by Framing, � (1, 63) = 6.42, � = .01. Participants in 
the Team conditions more strongly agreed (� = 5.72, �� = .24)
that they were able to give helpful feedback to the robot than par-
ticipants in the Individual conditions (� = 4.87, �� = .23). Neither 
Timing nor the interaction between Framing and Timing had a 
signifcant efect on this measure. There were no signifcant dif-
ferences by Framing, Timing, or their interaction on how strongly 
participants agreed that giving feedback was distracting or difcult. 

5.5 Perceptions of the Robot 
We conducted REML analyses for the post-strategy survey measures 
about participant perceptions of the robot. Because survey ques-
tions were after two games with a specifc strategy, robot Gameplay 
Strategy was included as a main efect. However, given that it is 
not the focus of this paper, we do not include results for diferences 
by robot Gameplay Strategy due to space constraints. 

An REML analysis showed a signifcant diference by Framing in 
how much participants liked the behavior of the robot in the game, 
� (1, 63) = 4.74, � = .03. Participants that experienced the Team 
framing (� = 5.96, �� = .15) liked the robot more than those that 
experienced the Individual framing (� = 5.47, �� = .15). The analy-
sis also showed signifcant diferences by Framing in how profcient 
(� (1, 63) = 16.11, � = .0002) and annoying (� (1, 63) = 7.57, � = 
.008) the participants found the robot. The Team framing led to the 
robot being perceived as more profcient (� = 6.77, �� = .07) and 
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less annoying (� = 1.82, �� = .15) than the Individual framing 
(profciency: � = 6.35, �� = .07; annoyance: � = 2.40, �� = .15). 

We found no other signifcant efects of Framing, Timing, or 
their interaction on perceptions of the robot. 

6 DISCUSSION 
Our frst hypothesis (H1a) was not supported. The framing of ut-
terances did not signifcantly impact the rate of feedback within 
games nor in the relevant windows of time that we analyzed. 

H1b was supported as the participants felt more positively about 
giving feedback and about the robot when the reminder was framed 
as helping the team compared to when it was framed as helping the 
individual robot. Participants that experienced the Team framing 
more strongly agreed that they were able to give helpful feedback 
(Sec. 5.4). This could be advantageous for future human-robot in-
teractions because individuals may continue to provide feedback 
throughout longer interactions if they feel that the feedback they 
are providing is worthwhile. The Team framing also made the robot 
seem more profcient and less annoying, and participants reported 
that they liked the robot’s behavior more compared to the Indi-
vidual framing (Sec. 5.5). While the Framing manipulation did not 
appear to infuence participant actions, it did infuence how partici-
pants felt about the interaction. Our results reinforce prior work 
that shows that even a diference of just a few words in how a robot 
communicates with users matters [20, 63]. 

We found partial support for H2a, which stated that participants 
with Before reminders would provide more feedback. While the 
diference was not signifcant when we considered full games, par-
ticipants did provide more feedback in the ten seconds after the 
Before reminder than in the ten seconds following the After re-
minder. We suspect this diference was because the robot guided 
the human’s attention to its new behavior with the Before reminder, 
whereas there was not a novel behavior following the reminder in 
the After conditions. Based on the results in Sec. 5.1, we are led 
to believe that a reminder before the robot changes its behavior is 
more fruitful than a reminder after the change in behavior. 

We did not fnd support for H2b, but instead found evidence 
that suggests a reverse efect. We hypothesized that participants 
would give feedback more quickly when the reminder was after 
the change in behavior. Instead, we found that participants more 
quickly provided feedback when the reminder was before it was 
apparent the robot was trying a new gameplay behavior. Whether 
the goal is to increase the amount of feedback provided or to de-
crease the elapsed time until the robot receives feedback, the Before 
reminder appears advantageous based on our study results. 

Importantly, participants provided less feedback in the ten sec-
onds after the reminder to give feedback in Game 4 than in Game 
3 (Sec. 5.1). This diference highlights the importance of novelty 
and underscores the importance of understanding how feedback 
reminders in HRI can be most efective, because it appears that 
reminders become less meaningful as they are repeated (as in [52]). 

Our fndings are limited to evaluative feedback. We chose to focus 
on this type feedback because it required minimal interruption to 
the participant’s own task. However, we posit that our results will 
transfer to other types of feedback, but would need to study this 
in future work. In this regard, we suspect that with other kinds of 

feedback (like corrections), our results may even be stronger than 
in this study because humans would likely have to focus more on 
the process of providing feedback for these other types. 

7 LIMITATIONS AND FUTURE DIRECTIONS 
Our work was limited in several ways, which highlight opportuni-
ties for further research. First, our study was conducted in the con-
text of a Space Invaders game. Future research should investigate if 
the proposed methods for eliciting human feedback are generaliz-
able to other interactions, especially tasks involving more physical 
manipulation by the robot, e.g., robots learning how to cook with 
users [60, 78], build physical objects [3, 32], or deliver parts in 
assembly lines [75]. Second, it is possible that participants were 
less sensitive to the robot’s behavior because its actions changed 
a virtual environment, not the physical state of the world, even 
though the robot was situated next to them. Third, in our study, 
the robot already knew how to play Space Invaders, so participant 
feedback was for the purpose of fne-tuning collaborative behav-
iors. It would be interesting to investigate how feedback reminders 
infuence participants when the robot has no prior knowledge of 
how to perform a task. Another limitation is that the algorithm 
that determined when a robot reminded participants to provide 
feedback was based on heuristics and fxed. Future work should 
investigate how to adapt the framing and timing of reminders to 
the behavior of users. Finally, our work studied the quantity of 
feedback provided, but it will be important for future work to study 
the quality of the feedback provided by humans. 

8 CONCLUSION 
We investigated the efect of general reminders for humans to 
provide feedback about a robot’s behavior during continuous, col-
laborative interactions with a robot. Our experimental setup was 
valuable for investigating human feedback in HRI because while 
providing feedback, participants were also engaged in the Space 
Invaders task, which required continuous attention and action on 
their part. We found that by reminding participants to provide 
feedback before the Nao tried a new gameplay behavior, the robot 
could infuence participants to provide feedback more quickly and 
more frequently. Although framing the feedback as helping the 
team during the reminder did not infuence the amount of feedback 
provided by participants in our study, it did result in more positive 
feelings about the robot and the process of providing feedback. We 
hope that our fndings encourage the HRI community to incorpo-
rate verbal reminders for feedback into interactions where a robot 
is learning from humans how to improve its behavior. 
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