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Figure 1: Overview of REACT. In REACT-Nao, people played a collaborative video game with a Nao robot (a). In REACT-Shutter, 
participants interacted with a Shutter robot during a photography task (d). For both datasets, we captured images of participants 
throughout the interaction (b,e) and provide facial analyses of the images (c,f). 

ABSTRACT 
Recent work in Human-Robot Interaction (HRI) has shown that 
robots can leverage implicit communicative signals from users to 
understand how they are being perceived during interactions. For 
example, these signals can be gaze patterns, facial expressions, or 
body motions that refect internal human states. To facilitate future 
research in this direction, we contribute the REACT database, a 
collection of two datasets of human-robot interactions that display 
users’ natural reactions to robots during a collaborative game and a 
photography scenario. Further, we analyze the datasets to show that 
interaction history is an important factor that can infuence human 
reactions to robots. As a result, we believe that future models for 
interpreting implicit feedback in HRI should explicitly account for 
this history. REACT opens up doors to this possibility in the future. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; • 
Computing methodologies → Artifcial intelligence. 
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1 INTRODUCTION 
Robots promise a future where they will help us with many physi-
cal and social tasks in human environments. However, as robots 
enter these environments, such as homes, many tasks will become 
subjective and driven by personal preferences [7, 25]. Because of 
this, it becomes infeasible to pre-program all tasks with which we 
may want robot assistance. Rather, it is essential to make robots 
better at learning from non-expert human teachers [3]. 

Human nonverbal reactions are a key and often underutilized 
source of information for learning from users in Human-Robot 
Interaction (HRI). Humans naturally convey information through 
their nonverbal behavior that provides cues about how they per-
ceive social encounters [19, 30]. Indeed, work in afective comput-
ing [15, 26] and social signal processing [29] has studied how we 
can create computational models to interpret human nonverbal 
reactions. More recently, work in HRI has started to explore this 
possibility (e.g., [11, 14]). It is generally agreed upon that efective 
social agents must be able to analyze, comprehend, and respond 
to nonverbal cues [12]. However, interpreting these cues can be 
challenging. Diferent cultures or situations can result in similar 
nonverbal cues, so these cues may have diferent meanings depend-
ing on the context in which they are generated [5, 9, 17]. 
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Table 1: Comparison of related available datasets. “Interactive task” indicates whether the human is actively interacting with the 
robot. “Additional task(s)” indicates if the participant had additional tasks other than just providing feedback to the robot (e.g., 
playing game in REACT-Nao). “Evaluative feedback” refers to if the dataset includes explicit, evaluative feedback about the robot 
from the participant throughout the interaction (either live or through annotations). The “Context” columns describe what 
additional context is provided in the dataset: E = Environment (e.g., location of enemies in REACT-Nao); H = Human (e.g., whether 
human spaceship moved left or right in REACT-Nao); R = Robot / agent (e.g., actual text of robot utterances in REACT-Shutter). 

Nonverbal Features Task Context History 

Head Facial Facial Raw Colocated Interactive Additional Evaluative Spans
Dataset Gaze E. H. R. pose landmarks AUs images robot task task(s) feedback interaction 

EMPATHIC [13] ✓ ✓ ✓ ✓ ✓ X X X X ✓ X ✓ ✓ 
Errors in HRI [28] X X X ✓ X ✓ ✓ ✓ X X X X ✓ 
REACT-Nao ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
REACT-Shutter ✓ ✓ ✓ ✓ X ✓ ✓ ✓ ✓ ✓ X ✓ ✓ 

In order to facilitate further research on how robots may leverage 
human nonverbal behavior in HRI, we contribute the Reactions and 
EvaluAtive feedbaCk over Time (REACT) database. REACT consists of 
two datasets that contain observations of humans, robots, and task-
related data during human-robot interactions (as shown in Figure 1). 
The frst dataset, REACT-Nao, consists of data from interactions from 
a user study [10] in which humans played a video game with a Nao 
robot while providing explicit feedback so that the Nao could learn 
to be a better teammate. REACT-Nao includes approximately 864 
minutes of data collected across 72 participants. The second dataset, 
REACT-Shutter, consists of observations from interactions with a 
tabletop social robot during a photography task. REACT-Shutter 
includes approximately 160 minutes of data collected across 40 
participants. Part of the latter data was used to investigate diferent 
annotation methods of robot performance during interactions [31]. 
In this work, we augmented this data with additional observations 
over the whole interaction to provide a more complete dataset to 
study human implicit signals in HRI. Together, the datasets provide 
a rich set of observations to analyze how human reactions are 
related to explicitly provided robot feedback. The datasets and 
documentation are available at: github.com/yale-img/react. 

As a second contribution, we analyze the datasets to evaluate 
a common assumption in how machine learning models are used 
to make predictions about users from their nonverbal behavior in 
HRI. In particular, prior work often focuses on making predictions 
from short horizons of observations (e.g., [14, 31]). However, our 
analyses suggest that humans may become less reactive to robots 
over time. Thus, in the future, it is important for data-driven models 
to more explicitly account for interaction history in HRI. The data 
that we contribute in this work opens up possibilities in this respect. 

2 RELATED WORK 
Existing Datasets. There is a long history of open datasets with 
human nonverbal reactions (e.g., see [27] for a survey on human fa-
cial expression recognition); however, such datasets are still scarce 
within HRI. There exist some datasets of human nonverbal reactions 
to robots [6, 8, 13, 18, 24, 28]. Out of this set, the two publicly avail-
able datasets that are closest to REACT involve participants watching 
robots commit errors during an interactive task [28] and watching 
agents perform a task sub-optimally [13], as detailed in Table 1. The 

other datasets [6, 8, 18, 24] provide great value to the feld of HRI, 
but do not facilitate research examining both nonverbal human 
reactions and explicit evaluative feedback during a task in which 
both the human and robot play a key role. Our dataset includes 
both explicit, evaluative feedback and implicit, nonverbal reactions 
from participants that were actively interacting with a robot dur-
ing a task. In comparison, the BAD Dataset [8] does not involve 
humans that are actively interacting with or explicitly evaluating a 
robot, but rather are reacting to videos that they observe online as 
bystanders. Similarly, the other datasets [6, 18, 24] do not include 
explicit feedback during the task. Rather, these datasets support 
other specifc research avenues (e.g., modeling user engagement). 
Reasoning about Human Nonverbal Reactions. In prior work, 
models that reason about human nonverbal reactions to robots typ-
ically fail to account for a rich interaction history. It is a common 
approach to reason about nonverbal cues at the individual snap-
shot level (e.g., [28]), especially when inferring specifc emotions or 
user states (e.g., [20]). Another approach is to examine changes in 
expressivity over fxed windows (e.g., [22]). While some models in-
corporate recurrence, they do not explicitly account for how human 
feedback may change over time (e.g., [31]). Our analyses suggest 
that as human-robot interactions evolve over time, human nonver-
bal signals may become more muted, requiring potentially diferent 
interpretations based on the interaction history. Going forward, it 
will be important to investigate algorithms that intelligently reason 
about feedback that is dependent on other factors, such as a longer 
interaction history or modeling of internal human states. This type 
of approach has been explored for reasoning about explicit human 
feedback, e.g., COACH learns from policy-dependent feedback [23]. 

3 THE REACT-NAO DATASET 
The frst dataset, REACT-Nao, contains observations throughout a 
collaborative game between a Nao robot and humans [10]. 

3.1 Data Collection 
First, participants consented to take part in the data collection, 
be video recorded and have their data shared. Participants played 
six games of Space Invaders with a Nao robot (Figure 1a). They 
were instructed to provide feedback to the robot via their keyboard 
during the game so the robot could learn to be a better teammate. 
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In the Space Invaders game, the goal was to destroy all enemies as 
a team. Each player generally took care of destroying enemies on 
one side of the game screen. However, the Nao employed diferent 
gameplay strategies across games which varied by when the robot’s 
spaceship crossed over to the human’s side of the gamescreen to 
help destroy enemies – we refer to these events as “visits”. During 
games 1 and 2, the robot did not crossover to the human’s side to 
provide assistance. During games 3 and 4, the robot crossed over to 
the human’s side for assistance on three separate “visits”. During 
games 5 and 6, the robot only crossed over for one “visit” at the end 
of the game, after it had destroyed all of the enemies on its own side. 
Participants were not prompted to speak during the interactions, 
but experimenters noted that some participants did speak at times. 

Participants answered survey questions after each pair of games, 
and a fnal set of survey questions. The interaction lasted approxi-
mately 35 minutes, and the participants were compensated US$10. 
The protocol was reviewed by our Institutional Review Board (IRB) 
and refned via pilots. For additional motivations and details of the 
user study, please refer to the work by Candon et al. [10]. 

3.2 Data Processing 
The dataset consists of data collected for 72 participants during the 
six games of Space Invaders that they each played. 

Facial Features. To analyze the images captured during the interac-
tion, we used OpenFace 2.0 [4], a open-source toolkit for automatic 
facial behavior analysis. OpenFace 2.0 [4] uses computer vision 
algorithms to analyze each image and extract features about head 
pose, eye gaze, facial landmarks, and facial action units (AUs). Our 
data is organized in individual CSV fles per game and participant. 
Each CSV fle has one row per frame that includes a frame number 
and the output from running OpenFace on the image from that 
frame. A detailed description of individual features is included in 
the dataset documentation. 

For our analyses, we frst smoothed individual OpenFace features 
with a Gaussian flter (with a rolling window with a width of 30 
data points and a Gaussian function with a standard deviation of 
10). We then segmented the frames into “visits” by when the robot’s 
spaceship was on the participant’s side of the screen. We examined 
the mean of values of OpenFace activation values during various 
“visits” across the games of Space Invaders to see how participants 
reacted to a change in robot gameplay behavior. All post-processing 
scripts are included in github.com/yale-img/react. 

Other features. Our dataset includes additional information that 
provides context about the interaction. For each game, we provide 
a json fle that contains game state information, robot game ac-
tions, and participant game actions (including explicitly provided 
feedback via keyboard presses). We also provide a CSV that pro-
vides demographic information for each participant. Additionally, 
the raw images of the participant during the games is available at 
github.com/yale-img/react. 

3.3 Results 
We frst analyzed how the robot’s visits afected human nonverbal 
signals as the data collection progressed. We used linear mixed mod-
els estimated with Restricted Maximum Likelihood (REML). The 

Figure 2: Mean of sum of AU values during robot visits in 
REACT-Nao. Error bars are standard error. Letters (A,B,C) de-
note statistical signifcance. If visits do not share a letter, 
there is a statistically signifcant diference between values. 

Game Number-Visit combination (e.g., Game3-First, Game4-Third, 
etc.) was a main efect and the participant ID was a random efect 
in the models. We conducted post-hoc Tukey Honestly Signifcant 
Diference (HSD) tests when appropriate. 

We frst examined the sum of AU activation values, as a proxy 
for participant expressiveness, during the robot visits in the in-
teractions. Our analysis showed a signifcant diference by Game 
Number-Visit combination, � (7, 7) = 16.54, � < 0.0001. The post-
hoc test revealed that the average of the sum of participant AU 
values during all three visits of both Game 3 and Game 4 were 
signifcantly higher than the robot’s single visits in Games 5 and 6. 
Additionally, the average of the sum of participant AU values during 
the frst visit of Game 3 was signifcantly higher than the third visit 
of Game 4. These diferences between earlier and later visits show 
that participants reacted diferently to similar stimuli based on 
when in the interaction they occurred. Figure 2 shows these results. 
A table of results is included in github.com/yale-img/react. 

4 THE REACT-SHUTTER DATASET 
REACT-Shutter contains data from interactions with a robot pho-
tographer [31]. A subset of this data was previously published 
[31], but it only included observations during specifc robot actions. 
REACT-Shutter provides the complete interaction history, enabling 
better analyses and modeling. 

4.1 Data Collection 
First, participants consented to take part in the data collection, be 
video recorded, and have their data shared. Each participant then 
sat in front of a small robot while the robot took six photographs 
of them (as in Figure 1d). The robot, called Shutter, is a social robot 
with a screen face mounted on a small arm [2, 21]. Shutter took 
photos of the participants via a camera mounted on its head. 

Each photograph was preceded by a series of four robot actions. 
These actions consisted of a mix of robot dialogue (telling jokes, 
telling the person to smile, and telling the person to relax) and 
changes to the robot’s pose. The physical pose actions included 
aiming the robot’s face directly at the participant, orienting its 
face away from the participant, or moving to one of four fxed 
poses. Actions were selected via weighted sampling, and an action 
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Figure 3: Median of sum of AU values over the photography 
interaction. Error bars are standard error. Trend line is a 
linear regression model with a 95% confdence interval. 

could not be selected twice in a row – additional action details 
are included in the dataset documentation. Similar to Section 3.1, 
participants were not prompted to speak during the interactions. 

Throughout the data collection, participants annotated robot 
actions based on their impressions of the robot’s performance and 
answered survey questions. The whole interaction lasted between 
45 minutes and one hour, and participants were compensated US$20. 
The protocol was approved by the local IRB. For more details about 
the data collection, please refer to Zhang et al. [31]. 

4.2 Data Processing 
The dataset consists of data collected for 40 participants, each of 
which completed six photography tasks. 

Facial Features. The facial features were computed as in Sec-
tion 3.2, but the data is organized into CSVs by photography task. 

For our analyses, we frst smoothed individual OpenFace features 
with a Gaussian window function, using the same approach as in 
Section 3.2. Additionally, we segmented the frames into action 
segments, splitting up the interaction based on when a new action 
began. We looked at the mean, median, maximum, and standard 
deviation of values of OpenFace features in each action segment. 
Post-processing scripts included in github.com/yale-img/react. 

Other features. Our dataset includes additional information that 
provides context about the interaction. For each photography task, 
we include a CSV that provides the timestamps and details of robot 
actions throughout the task (e.g., specifc utterance for a “joke” 
action). Additionally, we provide a summary CSV that provides 
additional information for each participant, including demographic 
information, the order of tasks, and the self-annotations. A full 
description of the features is available in the dataset documentation. 

4.3 Results 
We frst explored how the expressiveness of participants changed 
over time as the interaction progressed. Considering all participants, 
we examined a variety of statistics (mean, median, max, standard de-
viation) over the sum of action unit activation values during the 24 
actions that proceeded the individual photos in order. For example, 
see Figure 3 for the median values over each action segment. 

For each statistic calculated over the sum of AU activation values 
during action segments, we employed a linear regression model to 
predict the statistic considering action number as the independent 
variable. Table A of the dataset documentation displays the results 

computed with the scipy.stats Python library [1]. Across all four 
summary statistics, there was a statistically signifcant negative 
slope, suggesting that participants became less expressive to robot 
actions over time. However, the slopes were just slightly negative, 
and the Pearson correlation coefcients were low suggesting that 
the model may not adequately capture the underlying relationships 
within the data. This is to be expected since expressivity likely 
depends on many other factors and warrants further study. 

We ft another set of linear regression models, but this time con-
sidered whether the actions occurred frst, second, third, or fourth in 
a mini-series before a photo as the independent variable. For these 
models, the slopes were positive for mean, median, and maximum 
values of the sum of action unit values over action segments (Table 
B of the dataset documentation). Taken with the previous results, 
this suggests that within a short photography task, participants got 
more expressive, but over time gradually became less expressive. 

5 DISCUSSION 
The REACT database has the potential to infuence HRI work by 
facilitating research that examines automated reasoning about hu-
man reactions. This could enable a deeper understanding of the 
dynamics of human-robot interactions, which is essential for de-
signing more efective robots. As we work towards enabling robots 
to help with physical and social tasks in human environments, it 
will be important to consider how novelty efects diminish and peo-
ple change their responses to robots during interactions. Failing to 
account for changes in user expressivity could cause robots to fail 
to adjust their behavior to muted reactions later on in interactions. 

As with all human subject data, there are ethical considerations 
[16] for the use of the REACT database. Responsible use guidelines 
include ensuring that the data is not used for purposes that would 
negatively manipulate or impact people. 

Our database facilitates exciting research directions but it is not 
without limitations. The datasets showcase interactions for two 
diferent tasks, allowing users to explore model generalizability; 
however, it is unclear how analyses or models specifc to these two 
tasks would translate to other interaction scenarios. Also, there are 
other forms of implicit communicative signals, such as the tone of 
verbal communications, that are not included in the datasets. 

6 CONCLUSION 
We contributed two datasets that can facilitate studying how robots 
can improve their behavior based on naturalistic human reactions. 
Additionally, we found preliminary evidence highlighting the im-
portance of considering the interaction history when interpreting 
human reactions in HRI. We hope that the REACT database and 
initial fndings encourage the HRI community to further explore 
how robots can learn from implicit human feedback over time. 
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