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Abstract

Conventional approaches to vision-and-language navi-

gation (VLN) are trained end-to-end but struggle to per-

form well in freely traversable environments. Inspired by

the robotics community, we propose a modular approach

to VLN using topological maps. Given a natural language

instruction and topological map, our approach leverages

attention mechanisms to predict a navigation plan in the

map. The plan is then executed with low-level actions (e.g.

FORWARD, ROTATE) using a robust controller. Experiments

show that our method outperforms previous end-to-end ap-

proaches, generates interpretable navigation plans, and ex-

hibits intelligent behaviors such as backtracking.

1. Introduction

Enabling robots to understand natural language and carry

out communicated tasks has long been desired. A critical

step towards this goal in the context of mobile robotics is

vision-and-language navigation (VLN) [4]. In VLN, the

agent is provided with a navigation instruction such as:

“Exit the bedroom, walk to the end of the hall, and enter

the kitchen on your right.” The agent is then expected to

follow the instruction and move to the specified destination.

The majority of VLN systems [16, 20, 24, 29, 30, 43, 48,

55] are end-to-end deep learning models and utilize unstruc-

tured memory such as LSTM [22]. These methods work

well when the movement is constrained to pre-defined lo-

cations, but performance drops significantly when the agent

is allowed to move freely [26]. Moreover, learning to per-

form navigation, including mapping, planning, and control,

in a fully end-to-end manner can be difficult and expensive.

Such approaches often require millions of frames of experi-

ence [9, 47, 50], and yet performance substantially degrades

without ground truth odometry [9, 50].

To address the aforementioned issues, recent visual robot

navigation literature has explored using structured memory

(e.g. metric maps, topological memory) and using a modu-

lar approach, where the algorithm is explicitly divided into

relevant subcomponents such as mapping, planning, and

control [6, 7, 8, 15, 17, 23, 33, 39]. These approaches have

been demonstrated to work well for tasks such as target im-

age navigation and environment exploration. However, they

have not been well studied in the context of VLN.

In this work, we employ a modular approach and lever-

age topological maps for VLN. Topological maps, in-

spired in part by cognitive science, typically represent en-

vironments as graphs where nodes correspond to places

and edges denote environment connectivity or reachability.

Compared with metric maps, topological maps eliminate

the need for meticulous map construction. They promote

efficient planning, interpretable navigation plans, and nav-

igation robustness using cheaper sensors [33, 44]. In par-

ticular, the symbolic nature of topological maps lends them

suitable for navigation with language [32, 44], as the space

discretization provided by the maps can facilitate learning a

relationship between instructions and spatial locations.

Importantly, using topological maps synergizes well

with sequence prediction models. Predicting a naviga-

tion plan in a topological map bears many similarities

with predicting sequences for language tasks such as lan-

guage modeling and neural machine translation (NMT). By

drawing the parallel between navigation planning and lan-

guage sequence prediction, we can leverage powerful atten-

tion mechanisms [46] that have enabled significant break-

throughs in language tasks for the navigation problem. Re-

cently, these attention-based models have even been demon-

strated to achieve comparable performance to convolutional

neural networks on image recognition tasks [14].

We propose using a cross-modal attention-based trans-

former to compute navigation plans in topological maps

based on language instructions. Whereas a language model

predicts a word at a time, our transformer predicts one topo-

logical map node in the navigation plan at a time. Struc-

turing our model in this manner allows the agent to attend

to relevant portions of the navigation instruction and rele-

vant spatial regions of the navigation environment during

the navigation planning process. For example, this enables

our model to relate the word “bedroom” in a navigation in-

struction to the physical room in the environment.
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Figure 1: The agent uses the natural language instruction to generate a navigation plan in the topological map (left). A

controller then executes the predicted plan by sequentially traversing to each subgoal node in the plan (right). As the agent

approaches the subgoal node, it consumes that active node, and the subsequent node in the plan becomes the new active node.

Altogether, we propose a full navigation system for

VLN. Unlike much of the prior work in VLN, we use a

more challenging setup, allowing the agent to freely tra-

verse the environment using low-level discrete actions. To

this end, we define a topological map representation that

can be constructed by the agent after it has freely explored

the environment. The maps are used as part of a modular

navigation framework which decomposes the problem into

planning and control (Fig. 1). For each navigation episode,

our agent first uses the cross-modal transformer to compute

a global navigation plan from the navigation instruction and

topological map. This navigation plan is executed by a ro-

bust local controller that outputs low-level discrete actions.

We evaluate our approach using the VLN-CE dataset

[26]. Our experiments show that cross-modal attention-

based planning is effective, and that our modular approach

enables learning a robust controller capable of correcting

for navigation mistakes like moving in the wrong direction.

2. Related Work

Language modeling and pretraining. Recent language

model work has benefited from attention-based transformer

architectures [46] and generalized pre-training of language

models for fine-tuning on specific tasks [12]. These ad-

vances tie into the increasing interest in more effective

methods for image recognition [13] and language ground-

ing with visual cues [28, 41, 42]. In addition to captur-

ing semantics that can only be visually demonstrated, these

models allow for a more diverse range of applications than

language-only approaches including VLN.

Vision-and-language navigation (VLN). Much of the

progress in VLN has been achieved using end-to-end mod-

els [11, 16, 20, 24, 29, 30, 43, 49, 48, 55] trained using

the Matterport3D Simulator [4] in which the agent assumes

a panoramic action space [16] that allows it teleport to and

from a fixed set of pre-defined locations in the environment.

This setup promotes fast iteration and evaluation of differ-

ent VLN approaches. However, it ignores the problem of

associating action directions in the panorama with the pre-

defined positions in the environment as well as the motion

feasibility problem of moving from one location to another.

As pointed out with the end-to-end approach by Krantz et

al. [26], the VLN problem becomes significantly harder

when the agent is allowed to freely traverse the environ-

ment. In contrast, in our work the agent builds a topological

map of the environment from ground up using exploration

trajectories. This is done via pre-exploration similar to prior

work [48, 55]. At test time, the agent predicts a navigation

path in the map and uses the local controller to execute the

predicted path with low-level discrete actions, bringing the

task of VLN one step closer to reality.

Although they operate in the simplified action space,

Hao et al. [20] and Majumdar et al. [31] propose attention-

based transformer approaches that perform self-supervised

pre-training on a cross-modal network using visual lan-

guage pairings, either from the web or from demonstrations

of a typical VLN trajectory. By fine-tuning these pre-trained

models on specific VLN tasks, they achieve better gener-

alized performance across different variants of navigation

tasks. Their approaches operate on top of an existing nav-

igation graph and perform cross-modal attention between

image regions and language instead of spatial regions and

language. Additionally, Majumdar et al. propose a trajec-

tory scoring mechanism and relies on other methods to gen-

erate candidate routes. On the other hand, our approach

predicts routes and executes them with low-level actions.

Memory for visual navigation. Early learning-based

approaches to visual navigation were reactive [14, 56] or

based on unstructured memory [34, 35]. Later works inves-

tigate explicit representations of environments, such as met-

ric map-based representations [6, 17, 18, 19, 37, 54]. For

example, [2] use metric maps for VLN, and [15] use trans-

formers for explorative tasks by storing observations and

poses as memory. Topological maps have also been demon-

strated across different navigation problems [7, 8, 33, 39].

For language navigation, [32] and [53] use topological maps
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Figure 2: Topological map construction. The agent ex-

plores the environment multiple times, sparsifies the gener-

ated graph from each trajectory, and merges them together.

but do not use RGBD cameras as in our work.

3. Method

Problem setup. Our setup allows the agent to explore

the environments using exploration trajectories (Fig. 2)

prior to executing the VLN tasks. This mimics settings

closer to the real world in which the agent has to build an

understanding of the indoor environment on its own rather

than being handed a pre-defined map. After the exploration

phase, the agent is expected to perform VLN and is pro-

vided with (1) the instruction text and (2) the current RGBD

panorama observation. Our agent has orientation informa-

tion (or heading) but not positional information during nav-

igation time.

Overview of our approach. From the exploration

phase, the agent builds a topological map of the environ-

ment (Sec. 3.1). The agent then uses this topological under-

standing of the environment along with the instruction text

and current observation to execute the VLN task.

For executing the VLN task, we take inspiration from the

robotics community and use a modular approach. Specif-

ically, we separate our approach into planning and con-

trol. Using a modular approach has been proven to work

well [36, 45] and has numerous advantages including inter-

pretability, robustness, and flexibility [23].

In the planning stage, prior to taking any action steps

in the environment, the agent first uses the navigation in-

struction to generate an interpretable global navigation plan

through the environment (Sec. 3.2). The robot then tries to

follow the navigation plan using a repeating cycle of local-

ization and control until it reaches the destination (Sec. 3.3).

We use a hierarchical controller that first predicts waypoint

subgoals. Then the waypoints are translated into low-level

actions like FORWARD (0.25m) or ROTATE (15�).

3.1. Topological Map Representation

Before planning can take place, the agent must first con-

struct a topological representation of the environment. For

VLN, it would be desirable that the map 1) covers a large

proportion of traversable area; 2) contains rich information

in nodes and edges to enable localization as well as planning

from language; and 3) consists of connected nodes that are

reachable with high probability when executing the plan.

Similar to prior work [7, 33, 39], we represent the en-

vironment as a graph in which each node is an observation

and each edge represents the connectivity (or reachability)

between two nodes. As the agent explores the environment,

it places a node over its current location and connects this

node to the previous one.

In prior work [33, 39] the agent may end up placing mul-

tiple nodes in the same location. For example, two observa-

tions from the same position can look very different if they

are oriented 180� apart. This may result in dense topolog-

ical maps and exacerbate difficulties in localization, plan-

ning, and control as each node only contains partial infor-

mation about each location. To reduce redundancy and miti-

gate these issues, we represent the nodes as 360� panoramas

oriented in a consistent fixed global orientation.

An overview of the topological map construction is pre-

sented in Fig. 2. We run multiple pre-defined exploration

trajectories per environment. The graph from each explo-

ration trajectory is sparsified by a reachability estimator as

proposed by Meng et al. [33] and then merged into a sin-

gle graph that can be used for localization and planning.

Further details on the exploration trajectories and map con-

struction can be found in the supplementary material.

We append coarse geometric information to each di-

rected edge in the map. To this end, we introduce a quan-

tized polar coordinate system with 8 directions and 3 dis-

tances (0-2m, 2-5m, > 5m). Such information is useful for

resolving ambiguities (e.g. symmetric environments) and

may facilitate language/spatial reasoning. Since mapping is

not our main focus, we use ground truth odometry to com-

pute the edge categories during map construction. However,

this assumption is relaxed during navigation test time and

we instead use a neural network for localization (Sec. 3.3).

3.2. Cross-Modal Planning

As stated earlier, we modularize our approach into plan-

ning and control. For planning, the agent uses the con-

structed topological map and the navigation instruction to

formulate a global navigation plan as a path in the map. This

path, represented as a sequence of nodes, is then passed to

the controller at the end of the planning stage.

As depicted in Fig. 3, our planner has two main compo-

nents: a graph neural network (GNN) and a cross-modal

transformer (comprised of a map, language, and cross-

modal encoder). The GNN computes representations of the

environment which capture visual appearance and environ-

ment connectivity. These representations are passed along

with the navigation instruction to the cross-modal trans-

former which selects the next node in the plan in a sequen-

tial, auto-regressive fashion. This process repeats until the

planner classifies that the end of the plan has been reached.

Relationship to language modeling and translation.

Notably, our problem setup and approach bear similari-

11278



GNN

...

Topological Map

...

+

Map Features

Trajectory Position Encodings

...

...

+

Word Embeddings

Language Position Encodings

Tokenizer + Embeddings

Map Encoder Language Encoder

Cross-Modal Encoder

Classification Head

Natural Language Instruction

Figure 3: Planner. The planner processes the topological

map and language instruction separately. The information is

fused with a cross-modal transformer (map, language, and

cross-modal encoder) to classify the next step in the plan.

ties to language modeling and translation. In neural ma-

chine translation (NMT) specifically, the model conditions

on the source sentence x in addition to its prior predictions

y1, . . . , yt�1 in the predicted sentence.

p(y|x) =

T
Y

t=1

p(yt|y1, . . . , yt�1, x) (1)

Analogously, in our setup the agent predicts each step of

the navigation plan yt conditioned on its previous predic-

tions y1, . . . , yt�1 as well as the topological map G and the

navigation instruction L (i.e., x = (G,L)). This important

insight allows us to approach the VLN planning problem in

a manner similar to NMT and language modeling.

The following subsections illustrate the architectural

setup of our approach (Fig. 3). The planner has two

branches for encoding the map and the language instruc-

tion. In the map branch, we use a graph neural network

(GNN) to process the topological map and generate map

features (Sec. 3.2.1). In the language branch, the instruc-

tion is mapped to word embeddings. Finally, the map fea-

tures and word embeddings are passed into the cross-modal

transformer to produce a navigation plan (Sec. 3.2.2).

3.2.1 Learning Environment Representations using

Graph Neural Networks (GNNs)

To facilitate learning a mapping between language and

physical space, the map features passed to the transformer

should encapsulate visual appearance and environment con-

nectivity. In our work, these map features are learned via

a graph neural network (GNN), which carries strong rela-

tional inductive biases appropriate for topological maps.

The GNN is composed of sequential graph network (GN)

blocks [5]. Each GN block takes as input a graph G̃ =
(ũ, Ṽ , Ẽ) and produces an updated graph G̃0 = (ũ0, Ṽ 0, Ẽ0)
where the output features are computed according to the

graph structure. To do this, the GN block is comprised of

update functions φv(·), φe(·), φu(·) and aggregation func-

tions ρe!v(·), ρe!u(·), ρv!u(·). We implement the update

functions as multi-layer perceptrons (MLP) and use sum-

mation for the aggregation functions. For more details on

GNNs, we refer the reader to Battaglia et al. [5].

Input graph representation. The input to the GNN

is the topological map encoded as a directed graph G =
(u, V, E). To capture visual appearance and semantics, we

encode each vertex as a ResNet152 feature [21] extracted

from the corresponding fixed orientation RGB panorama.

To encode the relative geometry between nodes, we map

each edge category (Sec. 3.1) to a learnable embedding.

Each edge thus captures information about the relative ori-

entation and distance between a pair of connecting nodes.

Lastly, the global feature u is also a learned embedding.

Output graph representation. At the final layer of the

GNN, we extract the output node features V̂ = {v̂i}i=1:n as

the environment map features. Due to the message passing

nature of the GNN, this set of map features not only cap-

tures visual appearance but also environment connectivity.

The features are passed along with the tokenized instruction

to the cross-modal transformer described in the next section.

3.2.2 Cross-Modal Transformer

At the core of our planner is a cross-modal transformer

which takes as input the topological map encoded as map

features (modality 1; Sec. 3.2.1) and the navigation instruc-

tion (modality 2). The start node is also provided. Each

forward pass computes one step of the navigation plan.

Our transformer is based on LXMERT [42] which has been

demonstrated to be effective for vision and language tasks.

Attention. A fundamental component of this model is

the self-attention layer [46]. Specifically, an input sequence

x ∈ R
n⇥d of length n and dimension d is linearly projected

into a set of keys K ∈ R
n⇥dk , queries Q ∈ R

n⇥dk , and

values V ∈ R
n⇥dv . The queries and keys are then used to

compute a weighted sum over the values.

Attn(Q,K, V ) = softmax
⇣QK>

√
dk

⌘

V (2)

Single modal encoder. Each modality (map and lan-

guage) is encoded via its corresponding single-modality en-

coder. This encoder follows a standard transformer model

comprised of self-attention layers and feedforward layers.

As depicted in Fig. 3, the input to the map encoder is the

sum of the map features (output from the GNN) with tra-

jectory positional encodings. The language branch pro-
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Figure 4: Trajectory position encoding. Nodes in the pre-

dicted trajectory (green) utilize a positional encoding for the

corresponding position, whereas non-trajectory (NT) nodes

(blue) utilize the same positional embedding ENT .

cesses word embeddings from the natural language instruc-

tion summed with learned positional encodings.

Cross modal encoder. The cross-modal encoder [42]

exchanges information between the two modalities. Each

layer of the cross-modal encoder is composed of cross-

modal attention, self-attention, and feed forward layers. In

the cross-modal attention layer, the query comes from one

modality, and the keys and values come from the other

modality. The calculation for two input sequences xA, xB

corresponding with modalities A and B is in Eq. 3.

CrossAttn(xA, xB) = Attn(QA,KB , VB) (3)

The node features produced by the cross-modal encoder are

passed to a classification head, implemented as an MLP, to

compute the next step in the plan.

Trajectory position encoding. Since the transformer

predicts a single node token at a time, it is essential that

it keeps track of what has been predicted so far. To do this,

we add positional embeddings to the node sequence as il-

lustrated in Fig. 4. While sinusoidal positional encodings

are commonly used [46], we found that learned positional

embeddings yielded higher planning accuracy.

Stop action. We use a [STOP] token to indicate the

stop action. It is appended to the map features and classifi-

cation is performed over the nodes and the [STOP] token.

Training. The planner (GNN and transformer) is trained

end-to-end with cross entropy loss. We use the AdamW

optimizer [25, 27] with a linear warmup schedule. Further

architecture and implementation details are described in the

supplementary material.

3.3. Controller: Executing the Navigation Plan

The controller is responsible for converting the plan (a

topological path) into a series of low-level actions that take

the agent to the goal. The inputs of the controller are the

RGBD panorama of each planned node in the sequence, the

current RGBD panoramic observation at each time step, and

heading information. The output action space of the con-

Convolutional Encoder

Classifier Regressor

Direction Prediction (𝜙) Distance Prediction (𝜌)

.01 .03 .16 .37 .24 .04 .01 .00... 3.743

-180 -120 +180-150 +150...

Subgoal Node (Ok)Previous Node (Ok-1) Current Observation (Ocurr)

Figure 5: High level controller. Chigh uses the agent’s

observation and the previous and current subgoal node to

predict a waypoint relative to the agent in polar coordinates.

troller is defined as a set of parameterized low-level actions:

FORWARD (0.25m), ROTATE LEFT/RIGHT (15�).

The controller produces actions which move the agent

from one node to another. To do this, it must also perform

localization in order to determine when the current subgoal

node has been reached, at which point the agent can move

on to the next node in the plan. We abstract our controller

C to two layers: a low level controller Clow that moves

the agent towards a geometric waypoint, and a high level

controller Chigh that predicts such a waypoint. This high-

level controller is used for localization.

High level controller. The high-level controller uses

three panoramas, including the current and subgoal obser-

vations, to predict a waypoint to move towards in order to

reach the subgoal. We use a quantized polar coordinate sys-

tem to describe the waypoint relative to the agent. The polar

coordinate is partitioned to 24 sectors, encompassing 15 de-

grees each. A sector index and a numeric distance defines

the waypoint position. The predicted distance is used for

determining whether the subgoal has been reached (local-

ization).

Fig. 5 illustrates the design of the high level con-

troller Chigh. The partially observable agent state at any

time step is represented by a tuple of RGBD panoramas

(ok�1, ocurr, ok) where k is the index of the current sub-

goal. The observations correspond with the previous sub-

goal node, the current position, and the current subgoal

node, respectively. All observations are oriented in the same

heading direction using the heading information. To op-

timize for panoramic observations, we use circular convo-

lution layers [40] to encode the observations into features.

The features are then used to predict a classification vector

φ (direction of the subgoal node) and a scalar ρ (distance

between the agent and the subgoal node).

Both outputs are optimized simultaneously by imitation

learning using dataset aggregation (DAgger) [38], super-

vised by A* expert waypoints of a fixed lookahead distance.

The controller is trained separately from the planner.
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Handling Oscillation. Because the agent’s state is de-

fined by three panoramic observations only, there exists the

possibility of perceptual aliasing in which the agent’s obser-

vation is similar in multiple directions (e.g. a symmetric-

looking hallway with an anchor node at each end). In this

case, it is possible for the agent to move towards either di-

rection in alternating time steps, resulting in no progress.

To alleviate this issue, we introduce “stubbornness” to

the predicted heading probabilities such that the predicted

direction is biased towards the prediction of the previous

time step. We define a bias function B(φ0
t�1

,φt;σ
2) to

reweight the polar prediction at time t by multiplying each

element by a Gaussian distribution centered at the predicted

direction at the previous time step:

φ0

ti
= φti ∗N(i− argmax

j
(φ0

t�1j
),σ2) (4)

where i, j are indices into φ, and σ2 is the variance of the

Gaussian such that the lower the variance, the more biased

the waypoint is towards the previous predicted direction.

Mapping to low-level actions. After Chigh produces a

waypoint, a robot-specific low-level controller translates it

to a robot action. For our problem setup, we define Clow as

a simple policy that maps φ0
t to quantized low-level actions:

FORWARD if agent is facing the direction of argmaxi φ
0
ti

;

otherwise ROTATE towards that direction. This can be re-

placed by more sophisticated robot-specific controllers.

Localization and trajectory following. When the agent

traverses within a threshold distance d to the current sub-

goal node such that ρ ≤ d, it consumes that node. The

subsequent node in the plan becomes the new subgoal. This

process is repeated until no more nodes remain in the plan.

4. Experiments

We evaluate our approach using the Interactive Gibson

simulator (iGibson) [51, 52]. The agent is equipped with

a 360� panoramic RGBD camera and ground truth heading

information. Prior to navigation, the agent explores each

environment via 10 pre-defined trajectories and constructs

topological maps denoted as agent-generated (AG) graphs.

For evaluation, we use the VLN-CE dataset [26] and evalu-

ate on environments which were seen (val-seen) and unseen

(val-unseen) during training. We use the following metrics:

success rate (SR), oracle success rate (OS), and navigation

error from goal in meters (NE). Oracle success rate uses an

oracle to determine when to stop. A navigation episode is

successful if the agent stops within 3m of the goal position.

Details on these metrics can be found in [1, 4].

4.1. Planner Evaluation

In this section, we evaluate the performance of the plan-

ner in isolation from the controller. In addition to the agent-

generated maps, we also compare planning performance on

Val-Seen Val-Unseen

SR ↑ OS ↑ NE ↓ SR ↑ OS ↑ NE ↓

GNN 30.6 45.6 8.04 23.5 40.7 8.15

CMTP 37.9 54.0 6.54 26.0 39.1 7.62

AG CMTP-BCE 33.6 48.1 7.11 27.3 42.9 8.13

CMTP-R 37.4 52.6 6.28 26.5 41.3 7.66

CMTP-NS - 66.2 - - 64.0 -

GNN 27.3 51.2 9.62 20.7 49.5 11.21

CMTP 38.6 49.1 6.76 28.7 37.6 7.74

R2R CMTP-BCE 37.1 51.6 6.97 30.2 42.2 8.36

CMTP-R 38.4 49.8 6.91 26.8 36.7 8.04

CMTP-NS - 61.4 - - 60.5 -

Table 1: Planner performance. Our CMTP models outper-

form the baseline GNN and perform better on R2R graphs.

CMTP-NS is provided as an ablation. See text for details.

the pre-defined navigation graphs from Room2Room (R2R)

[4]. We compare our approach with a graph neural network

(GNN) baseline as well as variants of our cross-modal trans-

former planner (CMTP) with different stop mechanisms:

– Graph neural network (GNN): A GNN that directly pre-

dicts the final navigation goal in the topological map when

given the map, start node, and instruction. The instruction

is encoded using a transformer and passed as the global

feature to the GNN. The GNN then performs classifica-

tion over the nodes. To extract a navigation plan, we com-

pute a shortest path from the start node to the predicted

goal. This baseline is similar in spirit to [11].

– Cross-Modal Transformer Planner (CMTP): Our plan-

ner which predicts the stop action by performing classifi-

cation over the [STOP] token and node tokens.

– CMTP Binary Cross Entropy (CMTP-BCE): Uses a

separate (binary) cross-entropy loss for the [STOP] to-

ken, trained jointly with the node classification loss.

– CMTP Repeated (CMTP-R): Instead of using a

[STOP] token, this CMTP is trained to indicate the stop

action by predicting the same node consecutively.

– CMTP No Stop (CMTP-NS): Never produces a stop

command and is instead used as an ablation. It provides

insight into planning performance when correctly timing

the stop action is taken out of the picture. The episode

terminates after 20 planning steps.

Quantitative results are presented in Table 1. The trans-

former planner achieves higher success rates and lower nav-

igation errors compared to the GNN. Across all models, the

performance on seen environments is significantly higher

than unseen environments. This overfitting is most promi-

nent in the CMTP model. On the other hand, the CMTP-
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Figure 6: Cross modal attention (right) from nodes onto

instructions (top). Each column represents a node in the

predicted plan (left), going from blue to red.

BCE model has less overfitting at the cost of lower perfor-

mance on seen environments.

We observe that the oracle success rate of CMTP-NS

is significantly higher than all models. In other words,

the transformer planner often navigates to the correct lo-

cations but struggles to stop at the right time. These results

highlight the challenge of accurately stopping at the right

moment while illustrating the capability of our model for

choosing the correct places to navigate towards.

Different topological maps also affect performance. For

example, the transformer planners achieve higher perfor-

mance on the pre-defined R2R graphs due to the better po-

sitioned nodes and edges compared to the AG maps, which

sometimes has awkwardly placed nodes near walls or cor-

ners. This indicates the importance of (1) developing mod-

els which are able to navigate consistently well under dif-

ferent topological maps and (2) exploring new memory rep-

resentations which support effective and robust navigation.

Cross modal attention. The cross modal attention de-

sign of our planner facilitates informational flow between

the topological map and language domains, which is in-

tended to ground correlated visual node features to their in-

structional counterparts. An example is shown in Fig. 6,

which visualizes the first layer cross modal attention from

predicted nodes to the input instruction. We see that words

which encode the first half of the instruction correspond

with earlier nodes in the trajectory, whereas words such as

“hallway” and “living room” in the latter half of the sen-

tence correspond to the last three nodes of the trajectory.

We note that the model will sometimes focus attention

on articles or punctuation. This behavior is in line with pre-

vious observations [42] that the cross modal layer tends to

focus on articles over single noun references (e.g. attention

on “the” or “living” instead of “room”), using them as an-

chor words while likely relying on the language encoder to

connect the articles to the specific objects they reference.

(a) (b) (c) (d)

Figure 7: Plan execution. The controller is able to follow

the navigation plans (a, c) as shown by the trajectories (b,

d). It can also correct for mistakes via backtracking (d).

Unbiased σ
2
= 5 σ

2
= 3 σ

2
= 2

Pointgoal 99.8 / 99.5 99.9 / 99.4 99.9 / 99.7 99.6 / 99.2

AG 83.3 / 82.5 89.4 / 87.2 93.1 / 89.6 77.7 / 75.9

R2R 87.2 / 82.0 93.3 / 89.1 92.8 / 92.6 84.3 / 81.8

Table 2: Controller success rate in [seen / unseen] envi-

ronments for random point goals (≤ 5m away) and for ran-

domly sampled plans from R2R or AG graphs (≤ 12 nodes

away). Adding the bias greatly improves performance.

4.2. Controller Evaluation

We evaluate the controller separate from our planner by

executing episodes of random plans in the simulated envi-

ronment. A navigation success threshold distance of 1m is

used when evaluating the controller alone.

Fig. 7 shows qualitative results of the controller exe-

cuting navigation plans. The controller is able to navi-

gate while avoiding collision, despite graph edges cutting

through obstacles in the planned path. With the inclusion

of the previous node into the controller input, the agent is

able to learn intelligent backtracking behavior in which the

agent backtracks to the previously known position when it

makes a mistake and deviates from the path.

The quantitative results reported in Tab. 2 support our

observations that the controller works well. In navigation to

point goals (row 1), it achieves high success rates even in

unseen environments. Executing multi-node plans (rows 2-

3) also produces high success rates, with better performance

on R2R graphs than AG graphs due to their better positioned

nodes providing more informative observations.

4.3. VLN Evaluation

Finally, we evaluate our full navigation system. We com-

pare with the cross-modal approach in VLN-CE [26] since

it is the only prior work, to our knowledge, that considers

low-level actions like our work. VLN-CE is trained end-

to-end and utilizes a gated recurrent unit (GRU) [10] to en-

code the agent’s history. In addition to prior metrics, we

report success weighted by path length (SPL) [1], and plan-

ner success (PS) and controller success (CS) for modular

approaches. Our reported VLN-CE results in iGibson differ
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Val-seen Val-unseen

PS↑ CS↑ SR↑ OS↑ NE↓ SPL↑ PS↑ CS↑ SR↑ OS↑ NE↓ SPL↑

VLN-CE [26] - - 22.2 29.8 7.6 16.5 - - 19.7 27.2 7.8 14.1

AG

GNN 30.6 91.7 29.6 46.0 8.2 26.3 23.5 84.8 22.1 40.0 8.4 17.2

CMTP 37.9 92.2 35.9 56.2 6.6 30.5 26.0 86.6 23.1 39.2 7.9 19.1

CMTP-BCE 33.6 89.4 32.6 49.6 7.2 27.5 27.3 82.6 25.2 42.2 8.4 20.2

CMTP-R 37.4 93.1 36.3 53.9 6.5 31.3 26.5 87.8 25.3 42.6 7.9 20.3

R2R

GNN 27.3 89.1 26.6 51.9 9.4 21.2 20.7 88.6 20.3 48.3 10.9 16.4

CMTP 38.6 91.7 36.1 45.4 7.1 31.2 28.7 90.0 26.4 38.0 7.9 22.7

CMTP-BCE 37.1 89.6 34.4 49.3 7.4 29.9 30.2 89.6 28.9 40.7 8.4 24.1

CMTP-R 38.4 89.6 35.1 48.2 7.5 31.2 26.8 90.0 25.2 36.0 8.3 20.9

Table 3: Integrated system performance. The modular approaches (GNN, CMTP) outperform the end-to-end VLN-CE

model in success rate (SR), with our CMTP models achieving the best performance. Exploration steps not included in SPL.

slightly from [26] – see supplemental for details.

Table 3 shows that our CMTP models achieve the high-

est VLN success rates and SPL compared to the GNN and

VLN-CE baselines. Moreover, the methods which use topo-

logical maps outperform the end-to-end VLN-CE baseline.

While these results may be expected given that the former

methods pre-explore the environments, the gap in perfor-

mance is also due to reducing the search space through the

topological maps. By combining our cross-modal planner

and controller into an integrated system, we get the best

of both worlds: the planner achieves high planning suc-

cess rates while the controller is able to bring those plans

to fruition with low-level discrete actions.

We also ask: how do exploration trajectories influence

navigation performance? We collected 5 sets of AG maps

using different exploration trajectories, averaging 3.6m
traveled per m2 of traversable area in the environment and

about 300× longer than the test-time navigation trajecto-

ries. Using our CMTP model, we found consistent perfor-

mance across all maps with a standard deviation of only

1.1% in both full navigation SR and SPL. While this high-

lights the consistency of navigation performance under our

AG maps, further investigation into more effective topolog-

ical representations is left for future work.

Lastly, Fig. 8 shows exciting qualitative results of our

full navigation system. As illustrated by the agent’s pre-

dicted plan and executed trajectory, the modular approach

makes it easy to interpret the agent’s intents and evaluate its

ability to realize those intents. For instance, in Fig. 8 (top)

the planner predicts a path between the pool table and couch

as specified by the instruction. The controller executes the

plan by converting it into a smooth trajectory which tra-

verses between the two objects rather than around them.

5. Conclusion

We introduced a novel approach for VLN with topo-

logical maps. By using a modular system in conjunction

Figure 8: Our full navigation system. We show the

navigation instruction (top-left), the panorama observations

(right), and the predicted navigation plan (bottom-left) and

execution (bottom-middle). The arrows in each panorama

indicate the predicted action at the given panorama.

with topological maps, we saw a boost in navigation perfor-

mance compared to an end-to-end baseline. Potential exten-

sions include demonstrating VLN on a real robot [3] and us-

ing topological maps constructed at test time [7]. We hope

our work inspires further research in building robot systems

which communicate effectively and operate robustly.
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