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Fig. 1: We propose a method for performing robot localization in hand-drawn maps (a) via spline-based registration (b).
Our deep registration approach takes as input a LIDAR observation and a crop of the hand-drawn map, and predicts control
points which are used to compute the transformation from one image into the other.

Abstract— We propose a method to facilitate robot naviga-
tion relative to sketched maps of human environments. Our
main contribution centers around using thin plate splines for
registering the robot’s LIDAR observation with the hand-
drawn maps. Thin plate splines are particularly effective for
this task because they are able to handle many of the non-
rigid deformations commonly seen in sketches of maps, which
render traditional rigid transformations inappropriate. Our
proposed approach uses a convolutional neural network to
efficiently predict the control points which define the spline
transform, from which we then compute the pose of the
robot on the hand drawn map for navigation purposes. Our
systematic evaluations in simulation using a synthetic dataset
and real, hand-drawn sketches show that the proposed spline-
based registration approach outperforms baseline methods.

I. INTRODUCTION

In recent times, we have seen an increased interest in
enabling robots to follow navigation directions from humans.
This can now be achieved through graphical user interfaces
[1], [2], natural language commands [3], [4], [5], or even
gestures [6]. But what about visual communication? People
often convey directions to other people through drawings.

Inspired by [7], [8], [9], [10], we investigate methods
to enable robots to localize against sketches of human
environments, such that robots can follow navigation direc-
tions in such representations (Fig. 1a). Intuitively, if people
drew precise maps, we could use existing 2D localization
methods to follow drawn navigation instructions in human
environments. But people often draw approximate maps,
where straight lines may be slightly curvy. Likewise, angles,
distances and areas may not be accurate.
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Our insight is that even though drawn maps are not
precise, they are topologically consistent with the real world
– otherwise, people would get lost. To enable robots to
navigate relative to drawn maps, we propose a method for 2D
localization via spline-based registration. In contrast to using
more traditional rigid transformations, spline-based transfor-
mations allow for curved lines to be mapped to straight lines
and vice-versa. Moreover, spline-based transformations do
not necessarily preserve distances, areas, or angles. Unlike
arbitrary displacement fields, spline-based transformations
are more likely to preserve the topology of the environment.

We demonstrate how the proposed spline-based registra-
tion method enables a mobile robot equipped with a light
detection and ranging (LIDAR) scanner to navigate human
environments in Gibson [11], a perceptual and physics
simulator often used for evaluating navigation tasks in re-
alistic scenarios [12]. Enabling mobile navigation systems
to localize against imprecise map representations opens up
possibilities for new forms of human-robot interaction via
pictures and drawings.

II. RELATED WORK

Sketch-based navigation. Prior works have investigated
the use of hand-drawn maps for robot navigation from a
human-robot interaction perspective. For example, [7], [8],
[9], [10] propose systems in which the user uses a PDA (e.g.
PalmPilot) to draw a map of the environment along with
the desired trajectory for the robot. Methods such as [10]
process the trajectory and represent the navigation task as a
sequence of qualitative states with corresponding navigation
behaviors. A set of rules is then used for computing the
robot’s state along the path and a pre-programmed or pre-
learned controller executes the selected behavior. Our work is
inspired by these approaches but seeks to estimate a precise



location of the robot in the map and does not rely on a hand-
drawn trajectory.

More similarly, [13], [14] tackle navigation in sketched
maps by extending the Monte Carlo Localization [15], [16],
[17] algorithm. However, they assume sketch deformations
are limited to scale and rotation.

2D and 3D registration. Registration is a well studied
topic in 2D and 3D computer vision. A common approach for
registration is to iteratively minimize an alignment objective.
This has been demonstrated using keypoint detection and
building hand-engineered feature descriptors [18], [19], [20],
which can in turn be used for correspondence matching via
methods such as RANSAC [21].

Recent success in deep learning has led researchers to
investigate learned feature descriptors, which have shown to
have great success for feature extraction [22], [23] and fea-
ture matching [24], [25], [26]. End-to-end models [27], [28],
[29], [30] have also been proposed for predicting geometric
transformations (e.g. affine, thin plate spline). Our work falls
under this class of approaches, but focuses on spline-based
registration of LIDAR scans for state estimation.

Scan matching and localization in robotics. Scan
matching and localization have been studied extensively in
robotics. For point set registration, iterative closest point
(ICP) [31] is a commonly used approach for finding the best
rotation and translation to align two point sets. The point-
to-plane objective [32] has been shown to have faster con-
vergence speed [33] compared to the point-to-point variant.
However, this method requires strong initialization and takes
a long time to converge. Fast global registration [34] was
proposed to alleviate this issue and can be used in conjunc-
tion with ICP to perform accurate and fast registration. We
compare with this as a baseline.

Monte Carlo Localization (MCL) [15], [16], [17] is one
of the most widespread methods for robot localization. This
approach can very accurately estimate the robot state but
relies on a known metric map as well as motion and
observation models, which we do not depend on. However,
it would be interesting to investigate methods for combining
our proposed method together with particle filters to smooth
out localization predictions over time.

III. PROBLEM STATEMENT

Our aim is to enable robots to navigate human environ-
ments depicted by 2D sketches. In this work, we assume that
the sketches are contours of free space, which approximately
describe the layout of the environment of interest and serve
as a reference for navigation, e.g., as in Fig. 1(a). Further,
we assume that the initial pose and desired destination for
the robot on the sketch are given. Then, the main challenge
to enable navigation in this setup consists of localizing the
robot against the drawn map, given its current observations
of the world. This is an interesting problem because sketches
are inaccurate maps. People abstract spatial information [35]
and often focus on drawing familiar and salient elements [36]
rather than drawing precise outlines.

IV. APPROACH

A summary of our navigation approach is depicted in
Fig. 1b. During navigation, we repeatedly (1) register LIDAR
scans with range observations of the world against the drawn
map, (2) compute the state of the robot in the drawn map
from the registration, (3) plan motion commands for the
robot based on the current state and the desired goal, and
(4) execute the motion commands.

For the first step, we propose to use the powerful ap-
proximation capabilities of neural networks to predict thin
plate spline control points [37] which can then be used to
register LIDAR observations of the world against sketches.
Splines are advantageous for this problem because they allow
for significant deformation while preserving the topology of
the environment in most cases. For example, in Fig. 2, the
ordering of elements in a 2D map is preserved under the
transformation. More details about this registration approach,
which is one of our main contributions, are provided in the
next section.

We compute the robot’s state as its 2D pose, s= [px, py,α],
in the drawn map using the sampling grid from the spline
registration network. The position (px, py) of the robot in the
drawn map is its warped location from the LIDAR image.
The orientation (α) is computed using the sampling grid as
well. In this case, we warp a horizontal line in the direction
of the robot’s orientation in the observation image. We then
perform linearization on the warped line around the robot’s
position to calculate its direction in the sketch.

Finally, the robot uses the A* search algorithm [38] to
generate a shortest path plan to the goal in the form of a
sequence of positions. The plan is computed on the sketched
map, using the current estimated pose of the agent and its
goal position in the drawing. To move, the robot takes a
discrete, fixed size step in the direction of the next position
along the planned trajectory. This process of registration,
state estimation, planning, and execution is repeated until
the agent reaches the goal.

A. Registration via Thin Plate Splines

The inputs to our registration model are two images, as
depicted in Fig. 1b. The first image represents a LIDAR scan
gathered by the robot in the environment and projected into
a top-down view. The second image is a cropped section
of the hand-drawn map of the environment. This cropped
region is centered around the most recently predicted robot
pose. We use a neural network to predict the control points of
thin plate splines which can be used to warp the observation
image to the hand-drawn map. This network is composed of
differentiable components: a spline predictor network, and a
grid generator and sampler, described in the next paragraphs.

Fig. 2: The two diagrams are topologically equivalent.



Spline Predictor. Thin plate splines are a method for smooth
interpolation along a fixed set of control points [37]. In the
case of a 2D function f (x,y), we can use thin plate splines to
define a smooth surface that passes through a set of N control
points at positions (xi,yi) with values f (xi,yi). Formally, the
surface is defined as:

f (x,y) = a1 +a2x+a3y+
N

∑
i=1

wiU(|(xi,yi)− (x,y)|) (1)

where U(r) = r2 logr2, and a1, a2, a3, and wi are parameters
of the spline function. Note that eq. (1) can be written as
v = Ah, where:

v =


f (x1,y1)
f (x2,y2)

...
f (xN ,yN)

 , A =

[
K P
PT 0

]
, h =



w1
w2
...

wN
a1
a2
a3


(2)

K =


U11 U12 . . . U1N
U21 U22 . . . U2N
...

...
. . .

...
UN1 UN2 . . . UNN

 , P =

1 x1 y1
...

...
...

1 xN yN

 (3)

with U jk =U(|(xk,yk)−(x j,y j)|). If the positions (xi,yi) and
values f (xi,yi) of the control points are known, then the
parameters of the spline can be computed as h = A−1v.

To apply the above interpolation method to image registra-
tion, we can consider each pixel in the warped image to have
a coordinate (xT ,yT ). Our goal is then to compute where
each of these pixels is located in the pre-warped image. For
every pair of images to be registered, we compute two spline
functions f1(·) and f2(·) to map pixel coordinates in the
target image (xT ,yT ) to their corresponding positions in the
source image: (xS,yS) = ( f1(xT ,yT ), f2(xT ,yT )).

To compute the function parameters h1, h2 for f1(·), f2(·),
we use a Convolutional Neural Network (CNN). Doing so
allows the parameters to be quickly estimated in a single
forward pass rather than iteratively.

We use a fixed 4×4 grid of target control points uniformly
spread across the warped image and use the neural network
to predict their corresponding positions in the source (un-
warped) image. Thus, the neural network takes as input the
two images I1, I2, each of shape H×W pixels, and predicts
a tensor of shape 16×2 representing the source coordinates
of the control points in the input to be warped:

θ =
[
v1 v2

]
= g(I1, I2) (4)

The predicted source control points v1, v2 along with the
matrix A can be used to compute the spline parameters h1,
h2. Note that A can be calculated from the known target
control points.

We use a sequential neural network architecture to implement
eq. (4). The input images are concatenated along the channel
dimension to produce a tensor of shape H ×W × 2. This
is passed through five convolution layers with stride 2,
followed by two convolution layers with stride 1, and finally
through two fully connected layers. Each layer uses batch
normalization [39] and the ReLU activation function.

Grid generation and sampler. We use the two thin plate
splines to generate a sampling grid which is used to compute
the final warped image, similar to [27]. The sampling grid
is generated by first normalizing the pixel coordinates in the
target image (xT ,yT ) to be in the range [−1,1] and applying
the functions f1(·), f2(·) to each coordinate. Therefore,
each coordinate in the target image can be mapped to a
corresponding spatial location in the input image. The grid
is then used for sampling the input observation image and
warp it based on the splines.

We use the integer sampling kernel and perform nearest
neighbor sampling to preserve the structure of the input
image.1 In summary, the input LIDAR observation image
is sampled according to the splines to generate the warped
LIDAR image, which should ideally align with the hand-
drawn map. As stated in the beginning of Sec. IV, the
registration is then used for performing state estimation.

Training objective. We trained our model in a supervised
manner with mean squared error loss on the control point
positions: Jmse = 1

M ∑
M
i=1 ||θi − θ̂i||2. To this end, we first

collected a synthetic dataset consisting of (I1, I2,θ) triplets,
where I1 is the LIDAR observation and I2 is a crop of the
floor map perturbed using thin plate spline parameters θ .
The dataset was collected by capturing LIDAR observations
at different poses in multiple Gibson environments [40]. We
used the ADAM optimizer [41] with a fixed learning rate of
1e-4 to train the registration network end-to-end.

V. REGISTRATION EVALUATION WITH SYNTHETIC DATA

We evaluate the proposed registration approach using the
Gibson simulator [40] and the Gibson dataset [40]. We
process Gibson environments to generate a collection of
ground truth floor maps, which are warped to create synthetic
sketches. Warping is achieved by randomly sampling thin
plate spline control points and applying them to the ground
truth layouts. For each map in the environment, we sample
and evaluate on 5 different perturbations. Figures 3b and 3c
show examples of synthetic sketches from Fig. 3a.

In total, we train and evaluate on 573 and 10 different
environments, respectively. The evaluation is performed on
previously unseen environments, considering two registration
errors: the average L2 error in translation, and the average
angular (yaw) error. Errors are evaluated as the robot moves
through pre-defined trajectories in the environments.

1In theory, any sampling kernel can be used [27].



(a) Ground truth (b) Synthetic 1 (c) Synthetic 2

Fig. 3: Original floorplan of the environment (a) and syn-
thetically generated maps using thin plate splines (b, c).

A. Baselines

We compare our proposed registration approach, as de-
scribed in Sec. IV-A, with the following baselines:
ICP. Point-to-Plane Iterative Closest Point (ICP) method
with fast global registration by Zhou et al. [34]. This regis-
tration method computes an initial global registration using
features from fast point feature histograms (FPFH) [42]. The
estimated initial transform is then used to initialize the point-
to-plane ICP algorithm [32], which outputs a final rotation
and translation to register the observation with the sketch.

Ablation (Affine). This is an ablation of our approach to
evaluate performance using a rigid, isometric transform
rather than the proposed spline-based transform. We use a
Convolutional Neural Network to predict affine transforma-
tion parameters for image registration.

B. Results

As shown in Fig. 5, our spline-based registration is able to
handle non-rigid deformations that are infeasible to generate
from traditional rigid transform approaches or even affine
transforms. For example, in the second row of Fig. 5, the
LIDAR observation shows a rectangular room with straight
walls and right angles. However, the corresponding walls
and corners on the perturbed floor map are geometrically
very different from the original – straight lines now have
curves, and the right angles are no longer 90 degrees.
Nonetheless, the registration network is able to compute
a transform which allows the images to be aligned well.
Furthermore, our end-to-end trained network does not utilize
explicit correspondence matching but is still able to accom-
modate mismatches between the LIDAR observations and
floor maps. For example, in the bottom row of the Fig. 5,
the LIDAR sensor gets returns from an object not visible in
the floor map. However, the model is still able to successfully
register the images.

Table I provides quantitative registration results. The
learning approaches outperform ICP. From our observations,
many of the large errors arise due to inaccurate transforms
computed by the fast global registration algorithm. These
likely occur due to mismatches between the synthetic sketch
map and the LIDAR observation, such as rooms which are
not visible from the LIDAR sensor or furniture seen in
the observation but not captured in the floor map. Because
ICP relies on an accurate initialization, the final predicted
transformation is inaccurate and the algorithm tends to fail.

TABLE I: Registration results on the synthetic dataset.

Metric ICP Ablation (Affine) Ours

Translation Error (cm) 235.95 168.39 46.25
Angular Error (deg) 95.09 57.11 18.16

Fig. 4: Example failure cases with sketch (brown), overlay of
warped observation (black), and sampling grid (light blue).

There is a natural limit in the capacity of the proposed
model to align LIDAR observations with synthetic maps. If
the images differ significantly, alignment becomes difficult.
Fig. 4 shows two failure examples. In these cases, the objects
in the map look very different in the LIDAR image.

VI. NAVIGATION EVALUATION WITH DRAWN MAPS

To assess complete system performance, we evaluate the
proposed approach on navigation tasks in the Gibson en-
vironments from Sec. V. For this evaluation, we created a
second dataset of maps hand-drawn by human annotators.
As shown in Fig. 6, many of the details in the ground truth
map are lost in the drawings.

As before, we consider the ICP and Ablation (Affine)
registration baselines for comparison. We use these baselines
within our full navigation pipeline (Sec. IV) and compare
navigation success rate against our full approach with the
proposed spline registration method. A navigation attempt is
considered successful if the robot reaches the goal location
within 20 cm. Note that we do not evaluate using transla-
tional and rotational error since it is difficult to determine
ground truth poses for real, hand-drawn maps.

A. Results

Our model achieved a 31.67% success rate on navi-
gation using hand-drawn floor maps (Table II), which is
significantly higher than the 0% and 18.33% success rates
achieved by the baseline approaches. In particular, the com-
parison with the affine ablation model illustrates the effect
of choosing an appropriate transformation type for this task.
Although the network architectures and training procedures
for the two models are very similar, there is a significant
performance gap, as the affine network struggled to predict
suitable transformation parameters.

The model was trained on the synthetic dataset and tested
on the hand-drawn dataset, and the data distribution and
statistics differ between the two datasets. We suspect that
this caused the networks to underperform. Leveraging self-
supervised or semi-supervised learning methods could help
address this problem in the future.



Fig. 5: Qualitative results of our spline-based registration pipeline. From left to right: LIDAR observation, synthetic sketched
map, overlay of warped observation (black) and sketch (brown), and a grid (light blue) to visualize the warping.
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Fig. 6: Example of environments (a, c) and hand drawn maps
(b, d) collected for our navigation evaluation.

TABLE II: Quantitative results on the hand drawing dataset.

Metric ICP Ablation (Affine) Ours

Success Rate (%) 0.0 18.33 31.67

VII. CONCLUSION & FUTURE WORK

We presented an approach for localization against impre-
cise environment representations using splines. The method
is able to perform registration in settings that traditional rigid
transformations cannot handle by design. Our experiments
show that the proposed alignment approach is promising
for localizing relative to hand-drawn maps. Future directions
include reducing supervision and real-world evaluation.
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