
A Behavioral Approach to Visual Navigation
with Graph Localization Networks

Kevin Chen∗, Juan Pablo de Vicente†, Gabriel Sepúlveda†, Fei Xia∗,
Alvaro Soto†, Marynel Vázquez‡, and Silvio Savarese∗

∗Stanford University
†Pontificia Universidad Católica de Chile

‡Yale University

Abstract—Inspired by research in psychology, we introduce a
behavioral approach for visual navigation using topological maps.
Our goal is to enable a robot to navigate from one location to
another, relying only on its visual input and the topological map
of the environment. We propose using graph neural networks
for localizing the agent in the map, and decompose the action
space into primitive behaviors implemented as convolutional or
recurrent neural networks. Using the Gibson simulator, we verify
that our approach outperforms relevant baselines and is able to
navigate in both seen and unseen environments.
Webpage URL: https://graphnav.stanford.edu.

I. INTRODUCTION

Despite the ever-changing state of our indoor environ-
ments due to rearrangements in furniture, changes in lighting,
or the simple accumulation of clutter, humans are able to
seamlessly navigate through these “dynamic” spaces as if
nothing in the environment had changed at all. How can we
build similar visual navigation systems for robots? Although
most approaches for visual navigation today rely on metric
maps of the world and precise localization [43], research
suggests that biological systems in mice and men rely on
coarse spatial layout representations in the form of “cognitive
maps” [44]. Studies suggest that at the core of such cognitive
maps for large-scale spaces is a topological description of
the environment that can capture relationships about different
locations [27, 41, 30, 34]. Animals then execute navigation
strategies based on their qualitative knowledge of the space
[15]. While topological representations for navigation have
been extensively explored in the past, the re-emergence of
neural networks as a powerful tool for solving a variety of
tasks motivates us to revisit early ideas of topological robot
navigation and behavioral control [17, 7].

In this work, our goal is to enable a robot to navigate from
place A to place B given a topological map, a plan for how
to get from A to B in the map, and the current observation
of the environment obtained with an on-board camera (Figure
1). To tackle this navigation problem, we borrow ideas from
both classical robotic architectures and newer deep learning
approaches. In particular, we use a behavioral approach [7,
21] in conjunction with a topological representation of the
environment, but leverage modern deep learning techniques to
perform tasks such as localization and low-level control.

We pose the problem of robot navigation as a graph traversal
problem in a topological representation of the environment.

(b) Topological Map Overlay

(a) Cluttered Indoor Environment

Current EdgeTopological Map (Edges)
Topological Map (Nodes)

Depth

Fig. 1: A robot operates in a cluttered indoor environment
(a). Using a topological representation of the environment
and depth observations (b), the robot must navigate to its
destination, specified as a location within the topological map.

This formulation leads to three key questions: (1) What is an
effective topological representation for navigation? (2) How do
we localize the agent within this topological representation?
And (3) given localization information, how do we control the
robot to move according to our plan?

To address question (1), we construct the map to be a
directed graph with coarse information about relevant locations
for the navigation task (nodes) and connectivity between close
locations (edges). Every edge of the map is also labeled with
a visuo-motor behavior, such as turn left or turn right, that can
be executed to move from the source to the target node.

Given this representation of the environment, the next
question is (2) how to localize the agent within the map.
We propose using convolutional neural networks and graph
neural networks, which have been shown to have state-of-the-

ar
X

iv
:1

90
3.

00
44

5v
1

 [
cs

.C
V

]
 1

 M
ar

 2
01

9

https://graphnav.stanford.edu

art performance in node classification and graph classification
problems [47]. Graph neural networks (GNN) are a natural
approach for solving graph-related inference tasks because
their architecture allows them to capture relational inductive
biases, e.g., as specified by a topological map. We use these
networks in our approach to infer the location of a robot based
on the environment topology and its current visual input.

Lastly, given a localization estimate, the robot must deter-
mine how to maneuver itself according to the plan (3). By
construction, a path in the topological map can be translated to
a navigation plan in the form of a sequence of behaviors. It is
therefore trivial to determine which behavior to execute given
a localization prediction and a plan. We use neural networks
to robustly execute the given behavior, and repeat localization
and low-level control at every timestep (e.g. 5 Hz) to ensure
smooth transitions to different parts of an environment.

We test our approach on the Stanford 2D-3D-S dataset
[4, 3], which consists of reconstructed meshes of several
university buildings with complex layouts and large amounts
of clutter. We first constructed and annotated maps of these
environments with the proposed topological descriptions. We
then incorporated the maps into the Gibson physics-based sim-
ulator [46] and extended the simulator’s capabilities to create
a testbed for benchmarking robot navigation approaches. We
contribute to the community our map specification as well
as our tools and data, including a dataset that we created for
training the learning components of our system. This dataset is
composed of 2,371 long sequences of robot observations (e.g.,
RGB, depth, and semantic data) of the 2D-3D-S buildings
and the corresponding robot locations in topological maps.
Using this setup, we show that our method can navigate
more robustly than relevant baselines in both seen and unseen
cluttered indoor environments.

In summary, the main contributions of our work are:
• We introduce a specification for topological map design in
complex, real-world environments.
• We propose a novel framework for localization and naviga-
tion using convolutional neural networks in conjunction with
graph neural networks. By using a behavioral approach, we
are able to robustly navigate through realistic environments
using behavior-specific neural networks.
• We provide a dataset of robot navigation trajectories with
corresponding topological maps. Along with the trajectories,
we share RGB, depth, and semantic observations, as well as
annotated node localization and edge behavior information.
• We provide a testbed for benchmarking navigation tasks
with topological maps using Gibson. Agents can be controlled
through the Robot Operating System (ROS), and our evalua-
tion suite allows us to thoroughly analyze their performances.

II. RELATED WORK

There is a long history of prior work on indoor robot
navigation. We refer the reader to [26, 43] for a comprehensive
overview of related work. Due to limited space, we focus our
discussion on recent works related to visual indoor navigation
using deep learning (DL).

In contrast to the classical approach to robot navigation
that separates the tasks of mapping and localization [43]
from the task of path planning [28], most recent DL based
models propose end-to-end solutions that directly map sensor
data to robot actions [50, 11, 18, 37]. In a pioneering work,
Zhu et al. [50] presents a deep reinforcement learning (DRL)
approach that uses visual inputs to learn to steer a robot to
a goal position without resorting to an explicit map of the
environment. Interestingly, the resulting action policy learns
navigational priors that depend on the contextual scene, e.g.
kitchen or bedroom. As a drawback, due to its reactive nature,
the approach exhibits limited capabilities to generalize to new
environments or to plan long trajectories. Gupta et al. [18] use
DL techniques to emulate the Bayesian cycle behind SLAM
techniques [43]. However, their approach relies on ground
truth ego-motion as input and operates in a discretized domain.

In terms of works that use DL to keep an explicit rep-
resentation of the environment, Parisotto and Salakhutdinov
[32] present a Neural Map that emulates the operation of
a 2D occupancy grid [13]. As a main novelty, each grid
cell stores an embedding that encodes a memory related
to the corresponding robot position. Also in the context of
a metric map, Mirowski et al. [31] propose an end-to-end
DRL strategy that improves robot navigation by considering
auxiliary tasks, such as depth prediction and loop closure
classification. More similar to our approach, Savinov et al. [37]
implements a topological representation where graph edges
associate neighboring visual memories. Using this graph, robot
localization is performed using a nearest neighbors approach.

Departing from the works above, we follow the traditional
approach to robot navigation separating mapping and localiza-
tion from planning and execution. Furthermore, using ideas
from behavioral-based approaches [7, 21], we use DL to
implement a set of navigational behaviors such as follow a
corridor or turn right [35, 6]. Our aim is to take full advantage
of the rich semantic structure behind man-made environments
for navigation, and leverage simple robot behaviors to perform
complex tasks. Also, we avoid reliance on metric information
[32], robot odometry [18], or specific poses that need to be
attained during indoor navigation [19].

In terms of our topological representation, our work is
closely related to that of Sepulveda et al. [40]. However,
we do not rely on modifying the environment by introducing
artificial landmarks, and we define a reduced set of primitive
behaviors. These modifications help to (1) facilitate the design
of topological maps for realistic, human environments, and
(2) increase the robustness of learned navigation behaviors
given limited data. Furthermore, the work in [40] does not
pose navigation as a graph traversal problem.

There is also a connection between our work and previous
efforts on compositionality [2, 1] and learning sequencing of
manipulation primitives [14, 22, 49]. However, our goal is not
to solve new tasks given demonstrations of an ordered set of
actions. Instead, our goal is to execute an abstract navigation
plan given a topological map of a realistic human environment.

A key component of our navigation approach is a lo-

calization network that leverages GNNs [39, 5]. Recently,
GNNs have gained great attention as a powerful tool to model
relational data [47]. In terms of robot navigation, Yang et al.
[48] uses graph convolutional networks [25] but in the context
of encoding semantic scene priors. As far as we know, we are
the first to use GNNs to pose robot navigation as a graph
traversal problem in a topological map of the environment.

We test our approach using Gibson, an environment for
real-world perception [46] of large-scale indoor spaces [3].
In particular, we create topological maps for different spaces
and extend the capabilities of Gibson to create a benchmark
for behavioral robot navigation. With this effort, we support
others, e.g., [45, 12, 38], in building a rich and extensible en-
vironment for mobile robotics and machine learning research.

III. PROBLEM SETUP

We consider a robot operating in a cluttered indoor envi-
ronment with the goal of navigating from one node (A) in the
topological map to another node (B). In our setup, the agent
may not have seen the environment before, so no prior visual
information is provided in relation to the map. The ground
truth node location A is given to the robot when navigation
begins, but it must rely on its visual input and the map to
reach the desired destination. It is crucial for the robot to avoid
obstacles – otherwise it will fail the navigation task.

To mimic realistic physical settings, we consider a ROS-
controlled Turtlebot robot navigating in the PyBullet[9]-
powered Gibson simulator [46] (Fig. 1b). We perform experi-
ments with this robot on environments from the Stanford 2D-
3D-S dataset [4, 3]. The dataset was created using a Matterport
scanner to capture the geometry of office spaces in three
different university buildings. As a result, the floor plans can
be very complex and the spaces are filled with clutter including
chairs, couches, tables, boxes, and even dollies.

IV. TOPOLOGICAL MAP DESIGN

Inspired by research in psychology [27, 41, 30, 34], we
use a topological representation – a graph – to encode spatial
information about the environment. At a high level, each
node in the topological map represents a location. Each edge
corresponds to a behavior that allows the robot to get from
the corresponding source node to the target node, similar to
Sepulveda et al. [40]. However, due to the layout complexity of
the naturalistic environments in the Stanford 2D-3D-S dataset,
we substantially changed the topological map design compared
to Sepulveda et al. [40]. In our work, the map annotations are
done manually as described in the next paragraphs. Automat-
ing this process is a valuable future research direction [37].

Our insight behind map design is that the robot should be
able to traverse to and from any semantic location (e.g. office
1, office 2, pantry 1, conference room 1, etc.) by composing
a minimal length sequence of behaviors (edges) as specified
by the topological map. We leverage the Manhattan world
structure of indoor environments [8] and define the behaviors:
{find door (fd), corridor follow (cf), turn left (tl), turn right
(tr), straight into room (s)}. We reduce the specificity of our

Office 2

Office 1

Corridor Corridor

(a) Entering a room

Office 2

Office 1

CorridorCorridor

(b) Exiting a room

Corridor Corridor

C
or
rid
or

C
or
rid
or

(c) Entering an
intersection

Fig. 2: Examples of the topological map cropped to the local
region of the agent.

behaviors (compared to Sepulveda et al. [40]) in order to
simplify the design of topological maps, and make navigation
more generalizable and transferable across different scenarios.
Intuitively, turning left out of an office should require very sim-
ilar controls to turning left at a four-way intersection/junction
or turning left into a room (Fig. 2a).

To avoid localization ambiguities at each position in the
topological map, nodes and edges also have associated orien-
tations. For example, if executing a corridor follow behavior
in a hallway, it is not clear which direction to travel in, since
an agent can move along two opposite directions. To resolve
this ambiguity, there are two sets of nodes and edges for each
corridor, one for each direction (Fig. 2c).

Similarly, each room has a corresponding room node that
indicates that the robot is within the boundaries of that space
and facing any direction. In this case, if the robot is facing
towards the inside of the room, a turn behavior (e.g. turn left
out of the room) is not well defined. Thus, to ensure smooth
transitions in and out of these enclosed spaces, we also add
door nodes to rooms. These door nodes indicate that the robot
is positioned at the door and oriented towards the exit of the
room, as shown in Fig. 2b.

Based on these observations, we formulate the topological
map as a directed graph. We apply this representation to real
world environments using the following rules:

1) Each room in the environment, such as an office or
conference room, has its own single node.

2) Each room door also has its own node.
3) The find door behavior should connect each room node

to its door node.
4) Corridors have two sets of nodes, one for each direction

of the corridor.
5) Edges which indicate entering a room should connect to

the room node.
6) Exiting a room occurs from the door node.

In general, nodes should be placed at any transition point –
that is, any location that may require a change of behavior. For
example, upon approaching the exit to a room, there are many
possible behaviors to execute, such as turn left, turn right, or
even go straight across the hallway into another room. Because
this would require a change from the previous behavior (find
door), a door node should be placed prior to the exit of each
room. Likewise, after an agent has turned into a hallway, the
robot will likely transition from the turning behavior to a

different behavior (e.g. corridor follow). Therefore, a node
must be placed immediately after the turn to signify the
transition. Using this topological map representation, it is then
trivial to compute the sequence of behaviors for navigating
to and from any location (node) in the map with classical
planning algorithms [36].

V. METHOD

Two challenges for effective navigation with our topological
representation are: how to localize the agent, and how to direct
the agent along a plan. We organize our navigation approach
based on these key problems, as illustrated in Fig. 3.

The first challenge, localization, only needs to be done
relative to the topological map. To this end, we propose using
a graph neural network in combination with a convolutional
neural network (CNN). Once localized, the agent can easily
plan paths to any destination in the environment. Moreover,
it is trivial to determine which behavior needs to be executed
given a localization prediction and a planned path.

The second challenge comes in during the execution of the
plan. While the agent continuously updates its localization
prediction, it also has to generate motion controls to ensure
that it continues to follow the planned trajectory. In our work,
for each behavior we implement an individual neural network,
which we call a behavior network. This kind of network takes
as input the current observation of the world from the robot
– in our case, a depth image – and predicts low-level velocity
commands for executing the behavior.

The above components are combined using a simple behav-
ior selection module, which looks up the correct behavior to
execute given the localization prediction and the navigation
plan. In the case that a localization estimate is not part of
the plan, the module continues selecting the behavior from
the last valid position that was part of the plan. Localization
and behavior selection are repeated until the agent reaches its
destination or deviates from the expected path.

The following Section provides a brief introduction to graph
neural networks (Sec. V-A), followed by a description of the
graph representation used in our model (Sec. V-B). Then, we
describe our graph localization network (Sec. V-C) and, lastly,
present the behavior networks (Sec. V-D).

A. Preliminaries on Graph Neural Networks

First introduced by Scarselli et al. [39], GNNs have been
shown to be very effective at learning relative inductive biases
specified by graph structures. The following overview borrows
heavily from the description and notation in Battaglia et al. [5].
For more details, we refer interested readers to [5].

We define a directed graph to be a tuple G = (u, V, E),
where u is a global feature for the graph and can be interpreted
as a feature representation for the entire graph. V = {vi}i=1:n

is the set of vertices/nodes (cardinality n) where each vi is
a feature for node i, and E = {(ek, rk, sk)}k=1:m is the set
of edge tuples (cardinality m) for which edge k connects the
source node with index sk to the target node with index rk.
For simplicity, we assume the global, vertex, and edge features

have the same dimensionality D. That is, u ∈ RD, vi ∈
RD ∀ i ∈ {1, . . . , n}, ek ∈ RD ∀ k ∈ {1, . . . ,m}.

The basic element of a GNN is a graph network block (GN
block). A GN block takes as input a graph G̃ = (ũ, Ṽ , Ẽ) and
produces an updated graph G̃′ = (ũ′, Ṽ ′, Ẽ′) which can have
arbitrary feature dimensionality. As detailed in Algorithm 1,
the computation is done by first updating the edge features,
followed by the node features and lastly the global features.
The update functions φv(·), φe(·), φu(·) and aggregation
functions ρe→v(·), ρe→u(·), ρv→u(·) of the algorithm can be
implemented in different ways. In particular, we use multi-
layer perceptrons for implementing the update functions φ.
Since the aggregation functions must be symmetric and agnos-
tic to the input permutation, we use the summation function,
although averages or max/min could be used as well. We then
compose our GNN using sequential GN blocks.

B. Graph Representation

To use GNNs for localization, we must convert the con-
cept of a topological map into the representation defined in
Sec. V-A. We achieve this goal with learnable node, edge,
and global features, represented as the embedding lookup
table in Fig. 4. The feature for each node is one of three
possibilities, depending on the node type: room, hallway, open
space. Similarly, each edge feature can be one of five options:
corridor follow, turn left, turn right, find door, straight (into
room). The global feature changes at each timestep and is
a function of the current visual input – see Sec. V-C for
more details. As the model is trained, the node features, edge
features, and the CNN used for generating the global features
are all learned jointly with the graph localization network.

C. Graph Localization Network (GLN)

The goal of the graph localization network is to predict
the robot’s location in the map based on its current visual
observation, its last predicted location, and the entire map rep-
resented as described in Sec. V-B. To accomplish this, we use
a CNN to process the observations into visual features, which
are used as the global feature in our graph representation. In

Algorithm 1: Computation in a GN Block
1 function GraphNetwork(u, V , E)
2 for k ∈ {1 . . .m} do

// update edge features
3 e′

k ← φe(ek,vrk ,vsk ,u)
4 for i ∈ {1 . . . n} do

// aggregate incoming edges
5 let E′

i = {(e′
k, rk, sk)}rk=i,k=1:m

6 ē′
i ← ρe→v(E′

i)
7 v′

i ← φv(ē′
i,vi,u) // update node features

// aggregate updated node/edge features
8 let V ′ = {v′

i}i=1:n

9 v̄′ ← ρv→u(V ′)
10 let E′ = {(e′

k, rk, sk)}k=1:m

11 ē′ ← ρe→u(E′)
12 u′ ← φu(ē′, v̄′,u) // update global feature
13 return (u′, V ′, E′)

G
LN Behavior

Selection

Corridor Follow

Find Door

Turn Left

Turn Right

Behavior Networks Gate

Turn left

Navigation PlanTopological Map

Image Stack

Straight

v
Velocities

Fig. 3: Our navigation approach addresses localization and behavior selection. Based on the localization estimate from the
graph localization network (GLN) and the navigation plan, the agent can select a behavior network for the current timestep.
The velocities output from the selected network are used for low-level motor control.

parallel, we crop the graph to the local region around the last
predicted location. Then, together with the node, edge, and
newly computed global features, the graph is passed through
the GNN to predict the agent’s current edge in the graph. Note
that when navigation begins, the agent is provided with its
ground truth location (e.g. office 1). After the initial timestep,
the agent relies on its own localization predictions.

1) Computing the Global (Visual) Features: More con-
cretely, the inputs to the graph localization network are the
graph vertices and edges, the last predicted location, and an
image stack I of dimension H ×W ×C where H and W are
the image height and width, respectively. To ensure that spatio-
temporal information is captured from the visual observations,
the agent maintains a stack of the C most recent depth
image frames.1 The image stack is forward passed through a
convolutional neural network, as shown in Fig. 4, to compute
visual features. These features are used as the global feature
u ∈ RD in our model’s graph neural network.

2) Subgraph Cropping: In parallel to the computation of
the global features, the topological map is mapped to its graph
representation using the node and edge features described in
Sec. V-B. Since the graph of the entire environment can be
very large and it is unlikely for the robot to move from one
side of the graph to another far side, we crop a local region of
the map centered on the previous predicted robot location. In
particular, we crop a node if it is above a certain number
of edges away from the previous predicted location. The
localization prediction is then performed on the local subgraph,
which also has the added benefit of reducing computation.

During training, the correct localization is always at the
center of the subgraph, which may not necessarily hold true
at test time due to noisy (previous) localization predictions.
To increase localization robustness, we perform data augmen-
tation during training by sampling nearby nodes as the center
for the subgraph.

3) Graph Neural Network Prediction: To train the graph
neural network, we treat the localization problem as a clas-
sification task. Given a subgraph S with ms edges, the goal

1Although other modalities such as RGB may be used instead, we use depth
images (clipped to a maximum distance of 3.5 m) to facilitate with general-
ization to different scenes which may have diverse visual/color appearances.

is to classify which of the ms edges the robot is currently
on. In our setup, we use edge classification rather than node
classification because edge classification is better defined. For
example, at any instant the agent is executing an edge along
the navigation plan. Additionally, the edge carries both source
node and target node information, so it is trivial to localize
the agent to a (source) node given an edge prediction.

Our network is composed of two sequential GN blocks, with
the last block outputting per-edge logits of dimension 1. Let
ms be the number of edges in the subgraph, y be the index of
the ground truth edge, and pe be the vector of unnormalized
probabilities such that each element pek is the unnormalized
probability that the agent is on edge k. To train the network,
we use a softmax cross-entropy loss on the edge probabilities:

l(pe, y) = − log(exp pey/
∑
k

exp pek)

D. Behavior Networks

Once the robot has been localized, the next question is how
to control the robot given this coarse localization information.
Unlike most prior deep-learning based approaches, we use
a behavioral approach [40] such that our action space is
now composed of high-level semantic behaviors rather than
low level motor control. By using a learning-based, data-
driven approach, we can not only directly use the visual
inputs for control but also circumvent the need for precise
localization. This ties in nicely with the topological map
representation because coarse localization allows planning a
path in the topological map which directly translates to a
sequence of behaviors to execute. The first action of this
sequence determines which behavior network to use at the
current timestep for low-level motor control.

We implement the behavior networks as either a convolu-
tional neural network or a recurrent neural network, depending
on the specific behavior. The input to the network is the visual
information (e.g. depth images) and the output is the control
velocities for the robot. For the corridor follow and find door
behavior, we use a CNN similar to the one used for computing
the graph global features in Sec. V-C. The input is an image
stack I with dimension H ×W × C, and the output is the
translational and rotational velocities v = [vp, vθ]. For all

N
ode/E

dge Feat

E
m

bedding
Lookup

G
N

N

Subgraph
with

Features

Embedding
Lookup Table

Subgraph

C
N

N

G
lobal Feat

Node/Edge
Prediction

Graph Cropping

Topological Map

Last Predicted
Location

Image Stack

Fig. 4: The graph localization network (GLN) takes three inputs: the depth image stack, the topological map, and the last
predicted location. This information is then used to predict the agent’s current position within the topological map.

other behaviors (turn right, turn left, straight), we use a Long
Short-Term Memory network [20] with a CNN encoder. These
recurrent networks worked well in preliminary experiments.
We collected a dataset (Sec. VI-A) and trained these networks
via behavioral cloning using a mean squared error loss on the
predicted and ground truth velocities: l(ν, ν̂) = (ν − ν̂)2.

VI. EXPERIMENTAL SETUP

We perform all training and testing in the Gibson simulator,
which is powered by the Bullet physics engine [46]. This setup
is fairly different from those used by prior DL approaches
for navigation. For example, several works use synthetically
generated environments which do not accurately represent real
indoor spaces [31, 40, 37]. Other approaches have been tested
in more realistic house or office settings [45, 48, 19, 18], but
they ignore the collision problem entirely and allow the agents
to continue their trajectories despite undergoing collisions. In
our case, collisions are fatal and result in failed navigation.

We model the agent as a Turtlebot robot which is operated
via ROS. The robot is equipped with a depth camera with a
150◦ field-of-view. This wide angle view alleviates problems
with occlusions and doorways. Commands are executed with
a frequency of 5 Hz and the robot’s velocity is capped at 0.5
m/s. We do not provide ground truth ego-motion to the agent,
in contrast to prior works [31, 18, 32].

A. Dataset Collection

We collected data within Gibson in order to train the be-
havior networks and graph localization network. In particular,
we ran thousands of navigation tasks in simulation with the
ROS Navigation Stack [29] using ground truth odometry and
recorded visual observations from the robot (RGB, depth, and
semantic information) as well as odometry information. We
also injected noise into the velocity commands during data
collection in order to teach the agent to recover from poor
positioning. In our experiments, we used only depth images
for practicality and generalizability to different environments,
but provide RGB and semantic data for future endeavors.

After data collection, we used an automated annotation
process based on heuristics, outlined in the supplementary
material, to label the robot’s trajectory data in relation to

the environment’s topological map. In particular, we labeled
frames/timesteps with tags corresponding to the current behav-
ior that is being executed by the robot, the current node/edge
that it is traversing, and the semantic location (e.g., room
name). In total, we collected 2,371 motion trajectories with
an average of 423.56 frames per trajectory.

B. Navigation Evaluation Suite

Because our automated process to label robot trajectories
can run in real-time, we were able to create an experimental
setup for the systematic evaluation of behavioral navigation ap-
proaches. Our setup aims to facilitate reproducibility, such that
we can easily perform a thorough analysis of the performance
of various navigation models in realistic indoor environments.
For example, our setup can identify that a navigation approach
is very effective at turning from a hallway into another hallway,
but struggles with turning from a hallway into an office. We
refer to this infrastructure as our evaluation suite, and further
detail its key features in the next paragraphs.

1) Generation of Navigation Tasks: Our evaluation suite
supports sampling navigation plans (random start and end
nodes, followed by the shortest path) for the Stanford 2D-3D-S
dataset for which we created topological maps. Sampled plans
can then be used to evaluate navigation approaches or roll-outs
of navigation policies. In our experiments, we generated a set
of navigation tasks separately from the previously mentioned
dataset of Sec. VI-A. Their path lengths range from very short
(< 5 meters) to very long (> 50 meters). Example trajectories
resulting from these tasks can be observed in Fig. 5.

2) Evaluation Metrics: Our evaluation suite supports sev-
eral kinds of metrics. First, it can evaluate navigation perfor-
mance based on success rate, similar to prior work [40, 38].
A success occurs if the robot can follow the navigation plan
all the way until the destination without deviating from the
path. Conversely, a failure occurs if the robot does deviate or
gets stuck due to a collision. Second, our suite can evaluate
partial plan completion. More specifically, plan completion
is measured as the fraction of nodes in the plan that were
successfully reached by the agent during navigation. Third,
performance evaluation can be conducted in semantically

A1: 28.18m A3: 21.63m

A6: 29.53m A3: 26.48m

Success Cases

A4: 31.15m

Failure Case

Start Point End Point Executed Trajectory Expected Trajectory

Fig. 5: Examples of executed trajectories with the approximate navigation plan lengths. Seen environments: Areas 1, 5, 6 (A1,
A5, A6). Unseen environments: Areas 3, 4 (A3, A4). Best viewed in color.

meaningful ways. For example, our suite allows to check the
average success rate of a particular turn or junction in the plan
or map, or whether the robot struggles more with turning into
offices compared to turning out of them. These metrics are
particularly useful as they provide insight into what kinds of
scenarios an approach is likely to succeed or fail in.

C. Implementation Details
We implemented all neural networks using PyTorch [33].

We use depth images of 320 × 240 pixels and image stacks
of the C = 20 most recent frames where appropriate. Each
behavior network is trained individually. For training all net-
works, we use the Adam optimizer [24] with a learning rate
and batch size of 1e-4 and 32, respectively. We implement
the CNNs as a series of strided convolution layers with batch
normalization [23], and the graphs are encoded using global,
node, and edge features of dimension 512. The supplementary
material provides more details.

VII. EXPERIMENTAL RESULTS

We conduct experiments to evaluate the performance of
our navigation approach against several baselines. Following
Gupta et al. [19], we use five areas {1, 3, 4, 5, 6} from the
Stanford 2D-3D-S dataset in our evaluation. Areas 1, 5, and 6
are used for training, area 3 is used for validation, and area 4
is used for testing. It is worth noting that there are only three
distinct buildings in the dataset: areas 1, 3, 6 correspond to
different parts of one building, and area 4 and area 5 are each
captured in different buildings. Because each area is unique,
with varying size and structure, we report results for all of the
train, validation, and test areas.

We divide the navigation tasks into three difficulties based
on the number of nodes in the corresponding path: 1 through
10 nodes corresponds to difficulty I; 11 through 20 nodes
is difficulty II; and > 20 nodes is difficulty III (see the
supplementary material for additional details).

Our evaluation considers 3 baselines:
PhaseNet: This network [49] determines when to transition
behaviors by predicting their phase, or temporal progress. We
implement this network with an LSTM trained with a mean-
squared error objective on the progress of the behavior.
BehavRNN: Sequence-to-sequence deep learning model [42]
trained to perform behavior classification at each timestep
with a softmax cross-entropy loss. The model takes as input
the current visual observation and the navigation plan (as a
sequence of behaviors).

GTL: Navigation approach that uses our automated annota-
tion tools for Gibson to compute the Ground Truth Location
(GTL) of the robot in real-time relative to the map. To
navigate, the robot executes the behavior network according
to its current position in the map. The behavior networks used
for this baseline are the same as in our approach.
The first two baselines serve to compare our approach with
other relevant deep learning methods for behavioral naviga-
tion. The third baseline helps us study the performance of
our behavior networks in isolation from potential localization
errors induced by our graph localization network. We refer to
our approach as GraphNav in our experiments. In addition, we
implemented a particle filter for filtering the GLN predictions
and refer to this model as GraphNavPF.

We evaluate approaches based on full plan success rates,
per-behavior success rates, and average plan completion. As
mentioned before, plan completion is computed as the fraction
of nodes in the plan that the agent successfully reached.

A. Overall Navigation Performance

The quantitative results can be found in Table I. The results
show that PhaseNet works very poorly, resulting in the lowest
success rates and plan completion percentages. While the
corridor follow and find door behaviors have fairly high per-
behavior success rates, the turning success rates are very low,
usually below 50%. This approach results in an agent that
tends to follow corridors blindly, missing most of the turns.

Our approach outperforms the PhaseNet and BehavRNN
baselines in all areas. Relative to the PhaseNet baseline, the
turn success rates are significantly better in both seen and
unseen areas, such as 42.9% (PhaseNet) vs. 79.0% (GraphNav)
for turning left in area 1. Similarly, the success rates and
plan completion percentages across difficulty levels are higher
for our GraphNav model. While this difference is not as big
in the unseen areas, there is still a substantial difference in
performance. For example, PhaseNet achieves an average plan
completion of 55.4% in unseen area 3, whereas GraphNavPF
achieves an average of 77.7%.

Fig. 6 shows a qualitative example of how the localization
works with GraphNav. While the agent is in the office, the
graph localization network correctly predicts the location. As
the robot approaches the door, it is unclear in which direction
it will turn. At this point, the network weighs the left and right
turns equally, which translates to predicting that the agent is at
the door node, triggering a behavior transition. Lastly, as the

Per-Behavior Success Rates Per-Difficulty SR / PC Total

Area ID Model cf fd tr tl s I II III SR / PC

1 (Seen) PhaseNet 89.5 (196) 96.3 (54) 39.0 (41) 42.9 (42) 0 (2) 16.7 / 52.2 2.4 / 37.0 0 / 25.7 7.3 / 41.2
5 (Seen) PhaseNet 86.7 (158) 93.3 (45) 63.9 (36) 48.1 (52) - (0) 9.1 / 54.0 0 / 37.3 0 / 21.4 3.0 / 40.9
6 (Seen) PhaseNet 87.3 (173) 98.1 (53) 34.2 (38) 36.8 (57) 100 (2) 10.3 / 52.5 2.4 / 37.6 0 / 18.5 5.6 / 39.9
1 (Seen) BehavRNN 72.4 (127) 94.4 (54) 43.8 (32) 31.3 (32) 50.0 (2) 10.0 / 48.9 0 / 23.3 0 / 12.7 3.7 / 31.4
5 (Seen) BehavRNN 73.8 (107) 82.2 (45) 58.8 (34) 55.6 (36) - (0) 0 / 40.4 0 / 27.7 0 / 17.2 0 / 30.6
6 (Seen) BehavRNN 69.3 (137) 92.3 (52) 56.3 (32) 51.1 (52) 0 (2) 12.8 / 55.0 0 / 28.4 0 / 13.9 5.6 / 36.3
1 (Seen) GraphNav (ours) 91.4 (441) 98.1 (54) 98.2 (55) 79.0 (62) 20.0 (5) 53.3 / 81.9 19.0 / 60.9 10.0 / 58.0 30.5 / 68.2
5 (Seen) GraphNav (ours) 97.7 (344) 91.1 (45) 70.8 (65) 76.6 (64) 100 (1) 36.4 / 77.1 30.6 / 60.9 12.5 / 66.0 30.3 / 66.9
6 (Seen) GraphNav (ours) 94.3 (388) 96.2 (53) 74.6 (67) 83.1 (77) 50.0 (6) 51.3 / 80.8 22.0 / 63.1 33.3 / 59.6 36.0 / 68.3
1 (Seen) GraphNavPF (ours) 91.7 (409) 98.1 (54) 94.4 (54) 75.9 (58) 20.0 (5) 56.7 / 82.3 21.4 / 58.9 0 / 48.1 31.7 / 66.2
5 (Seen) GraphNavPF (ours) 98.6 (420) 93.3 (45) 90.3 (72) 86.7 (75) 100 (3) 59.1 / 82.8 66.7 / 79.1 37.5 / 69.8 60.6 / 79.2
6 (Seen) GraphNavPF (ours) 94.8 (430) 96.2 (52) 87.8 (74) 94.0 (84) 62.5 (8) 69.2 / 84.8 43.9 / 77.4 33.3 / 53.4 53.9 / 75.9
1 (Seen) GTL† 91.3 (438) 98.2 (54) 92.9 (56) 88.5 (61) 25.0 (4) 56.7 / 81.0 23.8 / 64.1 20.0 / 53.1 35.4 / 68.9
5 (Seen) GTL† 99.8 (523) 93.3 (45) 95.1 (82) 96.6 (88) 100 (4) 68.2 / 90.0 91.7 / 97.0 87.5 / 88.1 83.3 / 93.6
6 (Seen) GTL† 94.3 (418) 98.2 (54) 83.8 (74) 97.7 (85) 55.6 (9) 64.1 / 84.7 46.3 / 77.5 22.2 / 49.8 51.7 / 75.6

3 (Unseen) PhaseNet 87.6 (121) 100 (33) 40.0 (40) 46.3 (41) 100 (2) 20.4 / 61.3 0 / 37.8 - / - 15.3 / 55.4
3 (Unseen) BehavRNN 69.2 (117) 97.0 (33) 62.9 (35) 63.2 (38) 100 (1) 14.8 / 54.9 0 / 40.0 - / - 11.1 / 51.1
3 (Unseen) GraphNav (ours) 92.3 (182) 97.0 (33) 57.4 (47) 76.5 (51) 100 (3) 40.7 / 75.5 16.7 / 61.2 - / - 34.7 / 71.9
3 (Unseen) GraphNavPF (ours) 95.6 (206) 100 (33) 70.0 (50) 78.0 (59) 75.0 (4) 50.0 / 77.6 38.9 / 78.1 - / - 47.2 / 77.7
3 (Unseen) GTL† 96.1 (228) 97.0 (33) 98.2 (54) 92.1 (63) 75.0 (4) 74.1 / 86.6 83.3 / 88.9 - / - 76.4 / 87.2

4 (Unseen) PhaseNet 90.1 (192) 81.3 (32) 45.8 (48) 61.1 (36) 0 (1) 17.9 / 55.4 9.3 / 37.2 0 / 24.5 12.0 / 41.9
4 (Unseen) BehavRNN 76.4 (140) 87.5 (32) 43.6 (39) 57.7 (26) - (0) 14.3 / 49.5 2.3 / 27.1 0 / 9.3 6.7 / 34.5
4 (Unseen) GraphNav (ours) 90.5 (252) 90.6 (32) 55.4 (56) 76.1 (46) - (0) 25.0 / 67.8 11.6 / 44.8 0 / 17.7 16.0 / 52.0
4 (Unseen) GraphNavPF (ours) 87.5 (232) 93.75 (32) 63.6 (55) 75.0 (44) - (0) 32.1 / 68.7 9.3 / 41.7 0 / 24.5 17.3 / 50.9
4 (Unseen) GTL† 95.7 (376) 87.5 (32) 81.1 (74) 92.5 (67) - (0) 57.1 / 77.6 46.5 / 72.0 0 / 33.0 48.0 / 72.0

TABLE I: Performance comparison using success rate (SR) and average plan completion (PC). Numbers in parentheses represent
total number of attempts for that entry. GraphNavPF uses a particle filter on the GLN predictions (see the supplementary
material). The † indicates that GTL utilizes additional ground truth information. The dashes (-) indicate that there were no
trajectories for the corresponding entry, and best performing entries are bolded per area (not including GTL).

Current
Frame

Localization
Prediction

Office

Door

Hallway

Office

Door

Hallway

Office

Door

Hallway

Office

Door

Hallway

Office

Door

Hallway

Office

Door

Hallway

Fig. 6: GLN predictions over time. Darker arrows indicate higher probability predictions. Initially, the network localizes the
agent to the office. As the robot approaches the door, the predictions change accordingly. Once the robot reaches the door, the
controller executes the turn left behavior, affecting the visual information and changing the localization prediction in turn.

visuals show the robot turning left, the GLN becomes more
confident that it is on the edge corresponding to the left turn.

Successful navigation tasks by GraphNav are shown in
the four left-most images of Fig. 5. The robot completes
trajectories ranging from 20 m to 32 m. On the right is a failure
case in which the robot navigated most of the 26 meter-long
trajectory but deviated from the path towards the end.

B. Performance of the Behavior Networks

Qualitatively, we observe that the behavior networks used
in our approach succeed in their assigned task (e.g., follow a
corridor, turn left, turn right) while being robust to collisions
with walls and clutter, especially in structured areas. We refer
the reader to our webpage (https://graphnav.stanford.edu) for
more qualitative examples.

We verify our observations quantitatively using the GTL
baseline, which uses our behavior networks for motion control
along with our annotation tool for localization. As can be
seen in Table I, GTL performs well, especially in structured
environments such as area 5 (train), which has an average plan
completion of 93.6% and area 3 (val), which has an average
plan completion of 87.2%. Examining the per-behavior success
rates, we observe results generally above 80% and even 90%,
indicating robustness in both seen and unseen environments.

GTL struggles in certain cases. One example is large open
spaces, which are prevalent in areas 1, 3, 4, and 6. In these
spaces, the robot sometimes fails to orient itself correctly
during behavior execution, and walks into a corner or deviates
from the correct path. Recovery is difficult because the clutter
prevents the agent from having a direct line-of-sight to the

https://graphnav.stanford.edu

room exit. This challenge may be due to the maximum depth
of the robot’s observations (3.5 m).

VIII. CONCLUSION AND FUTURE WORK

We introduced an effective topological map design for
behavioral navigation and, to the best of our knowledge, are
the first to propose graph neural networks for robot local-
ization. We tested our proposed approach using Gibson, and
provide an open-source testbed for benchmarking navigation in
complex, human environments. Our results show the potential
of combining DL with classical robotic architectures.

While our method was able to outperform other DL base-
lines, there are several, interesting future research directions.
First, our topological maps were manually annotated and the
behaviors were pre-defined, limiting the scalability of our
setup. In the future, it would be interesting to investigate
mechanisms to create topological maps and behaviors in a
data-driven fashion. Second, there is room for improvement in
terms of navigation success rate (Table I). One key challenge
that is worth further investigation is the timing of the tran-
sitions between behaviors. The use of more explicit semantic
information could also be advantageous in our problem setting.
Lastly, future work could investigate sim-to-real transfer and
conduct experiments in real environments with a more prac-
tical camera setup. We hope that our work inspires further
research to advance autonomous, visual navigation.

IX. ACKNOWLEDGEMENTS

Toyota Research Institute (“TRI”) provided funds to assist
the authors with their research but this article solely reflects
the opinions and conclusions of its authors and not TRI or
any other Toyota entity. This work is also partially funded by
Fondecyt grant 1181739, Conicyt, Chile.

REFERENCES

[1] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. Neural module networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 39–48, 2016.

[2] Jacob Andreas, Dan Klein, and Sergey Levine. Modular
multitask reinforcement learning with policy sketches.
In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 166–175. JMLR.
org, 2017.

[3] I. Armeni, A. Sax, A. R. Zamir, and S. Savarese. Joint
2D-3D-Semantic Data for Indoor Scene Understanding.
ArXiv e-prints, February 2017.

[4] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang,
Ioannis Brilakis, Martin Fischer, and Silvio Savarese.
3d semantic parsing of large-scale indoor spaces. In
Proceedings of the IEEE International Conference on
Computer Vision and Pattern Recognition, 2016.

[5] Peter W Battaglia, Jessica B Hamrick, Victor Bapst,
Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive

biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[6] Mariusz Bojarski, Davide Del Testa, Daniel
Dworakowski, Bernhard Firner, Beat Flepp, Prasoon
Goyal, Lawrence D Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al. End to end learning for
self-driving cars. arXiv preprint arXiv:1604.07316,
2016.

[7] Rodney Brooks. A robust layered control system for a
mobile robot. IEEE journal on robotics and automation,
2(1):14–23, 1986.

[8] James M Coughlan and Alan L Yuille. Manhattan world:
Compass direction from a single image by bayesian
inference. In Proc. of the Seventh IEEE International
Conference on Computer Vision, volume 2, pages 941–
947. IEEE, 1999.

[9] Erwin Coumans and Yunfei Bai. Pybullet, a python
module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016–2018.

[10] Frank Dellaert, Dieter Fox, Wolfram Burgard, and Sebas-
tian Thrun. Monte carlo localization for mobile robots.
In ICRA, volume 2, pages 1322–1328, 1999.

[11] Alexey Dosovitskiy and Vladlen Koltun. Learn-
ing to act by predicting the future. arXiv preprint
arXiv:1611.01779, 2016.

[12] Alexey Dosovitskiy, German Ros, Felipe Codevilla, An-
tonio Lopez, and Vladlen Koltun. CARLA: An open
urban driving simulator. In Proceedings of the 1st Annual
Conference on Robot Learning, pages 1–16, 2017.

[13] A. Elfes. Occupancy Grids: A Probabilistic Frame-
work for Robot Perception and Navigation. PhD thesis,
Carnegie Mellon University, 1989.

[14] J. Felip, J. Laaksonen, A. Morales, and V. Kyrki. Ma-
nipulation Primitives: A Paradigm for Abstraction and
Execution of Grasping and Manipulation Tasks. Robot.
Auton. Syst., 61(3), March 2013.

[15] Patrick Foo, William H Warren, Andrew Duchon, and
Michael J Tarr. Do humans integrate routes into a
cognitive map? map-versus landmark-based navigation
of novel shortcuts. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 31(2):195, 2005.

[16] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebas-
tian Thrun. Monte carlo localization: Efficient position
estimation for mobile robots. AAAI/IAAI, 1999(343-349):
2–2, 1999.

[17] Matthias O Franz and Hanspeter A Mallot. Biomimetic
robot navigation. Robotics and autonomous Systems, 30
(1-2):133–153, 2000.

[18] Saurabh Gupta, James Davidson, Sergey Levine, Rahul
Sukthankar, and Jitendra Malik. Cognitive Mapping
and Planning for Visual Navigation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

[19] Saurabh Gupta, David Fouhey, Sergey Levine, and Ji-
tendra Malik. Unifying map and landmark based
representations for visual navigation. arXiv preprint

https://arxiv.org/abs/1604.07316
https://arxiv.org/abs/1604.07316
http://pybullet.org
http://dx.doi.org/10.1016/j.robot.2012.11.010
http://dx.doi.org/10.1016/j.robot.2012.11.010
http://dx.doi.org/10.1016/j.robot.2012.11.010
http://openaccess.thecvf.com/content_cvpr_2017/papers/Gupta_Cognitive_Mapping_and_CVPR_2017_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2017/papers/Gupta_Cognitive_Mapping_and_CVPR_2017_paper.pdf

arXiv:1712.08125, 2017.
[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-

term memory. Neural computation, 9(8):1735–1780,
1997.

[21] Ian Horswill. Polly: A vision-based artificial agent. In
AAAI, pages 824–829, 1993.

[22] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Ani-
mesh Garg, Li Fei-Fei, Silvio Savarese, and Juan Carlos
Niebles. Neural task graphs: Generalizing to unseen
tasks from a single video demonstration. arXiv preprint
arXiv:1807.03480, 2018.

[23] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[25] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[26] I. Kostavelis and A. Gasteratos. Semantic mapping
for mobile robotics tasks: A survey. Robotics and
Autonomous Systems, 66(103):86–103, 2015.

[27] Benjamin Kuipers and Yung-Tai Byun. A robot explo-
ration and mapping strategy based on a semantic hierar-
chy of spatial representations. Robotics and autonomous
systems, 8(1-2):47–63, 1991.

[28] J.C. Latombe. Robot motion planning. Kluwer Aca-
demic, 1991.

[29] David V Lu, Dave Hershberger, and William D Smart.
Layered costmaps for context-sensitive navigation. In
Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on, pages 709–715.
IEEE, 2014.

[30] Kevin Lynch. The image of the city, volume 11. MIT
press, 1960.

[31] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert
Soyer, Andrew J Ballard, Andrea Banino, Misha Denil,
Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al.
Learning to navigate in complex environments. arXiv
preprint arXiv:1611.03673, 2016.

[32] Emilio Parisotto and Ruslan Salakhutdinov. Neural map:
Structured memory for deep reinforcement learning.
arXiv preprint arXiv:1702.08360, 2017.

[33] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in pytorch. 2017.

[34] J. Piaget and B. Inhelder. The Child’s Conception of
Space. Norton, 1956.

[35] Dean A Pomerleau. Alvinn: An autonomous land vehicle
in a neural network. In Advances in neural information
processing systems, pages 305–313, 1989.

[36] Stuart J Russell and Peter Norvig. Artificial intelligence:
a modern approach. Malaysia; Pearson Education Lim-
ited,, 2016.

[37] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen
Koltun. Semi-parametric topological memory for nav-
igation. arXiv preprint arXiv:1803.00653, 2018.

[38] Manolis Savva, Angel X. Chang, Alexey Dosovitskiy,
Thomas Funkhouser, and Vladlen Koltun. MINOS:
Multimodal indoor simulator for navigation in complex
environments. arXiv:1712.03931, 2017.

[39] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009.

[40] Gabriel Sepulveda, Juan Carlos Niebles, and Alvaro
Soto. A deep learning based behavioral approach
to indoor autonomous navigation. arXiv preprint
arXiv:1803.04119, 2018.

[41] Alexander W Siegel and Sheldon H White. The devel-
opment of spatial representations of large-scale environ-
ments. In Advances in child development and behavior,
volume 10, pages 9–55. Elsevier, 1975.

[42] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104–
3112, 2014.

[43] Sebastian Thrun, Wolfram Burgard, and Dieter Fox.
Probabilistic robotics. MIT press, 2005.

[44] Edward C Tolman. Cognitive maps in rats and men.
Psychological review, 55(4):189, 1948.

[45] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.
Building generalizable agents with a realistic and rich 3D
environment. arXiv preprint arXiv:1801.02209, 2018.

[46] Fei Xia, Amir R. Zamir, Zhi-Yang He, Alexander Sax,
Jitendra Malik, and Silvio Savarese. Gibson env: real-
world perception for embodied agents. In Computer
Vision and Pattern Recognition (CVPR), 2018 IEEE
Conference on. IEEE, 2018.

[47] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826, 2018.

[48] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta,
and Roozbeh Mottaghi. Visual semantic navigation using
scene priors. arXiv preprint arXiv:1810.06543, 2018.

[49] Tianhe Yu, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. One-shot hierarchical imitation learning
of compound visuomotor tasks. arXiv preprint
arXiv:1810.11043, 2018.

[50] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim,
Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-
driven visual navigation in indoor scenes using deep
reinforcement learning. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pages
3357–3364. IEEE, 2017.

https://pdfs.semanticscholar.org/9e6a/9a2f20968f7081c391ae62ad963b4c6c2957.pdf
https://arxiv.org/abs/1807.03480
https://arxiv.org/abs/1807.03480
https://arxiv.org/abs/1611.03673
https://arxiv.org/abs/1803.00653
https://arxiv.org/abs/1803.00653
https://arxiv.org/abs/1801.02209
https://arxiv.org/abs/1801.02209
https://arxiv.org/pdf/1810.06543.pdf
https://arxiv.org/pdf/1810.06543.pdf

APPENDIX A
IMPLEMENTATION DETAILS

We used the dataset described in Sec. VI-A of the main
paper to train the behavior networks and the graph localization
network individually (Fig. 3 of main paper). The networks
were all trained using the Adam optimizer [24] with a learning
rate of 1e-4 and a batch size of 32, as mentioned in Sec. VI-C
of the main paper.

For all convolutional layers, we used convolutions without
padding, and we used ReLU for all activation functions. All
networks were implemented using PyTorch [33].

A. Graph Localization Network (GLN)

1) Subgraph Cropping: During training time, we crop the
graph by first sampling a node to be the center for the crop
region, as discussed in Sec. V-C of the main paper. We then
remove all nodes from the graph that are beyond a distance of
3 edges ahead of the sampled node or a distance of 2 edges
behind sampled node. Lastly, we perform a check to ensure the
ground truth edge is within the subgraph. If the subgraph does
not contain the ground truth edge, we re-sample a new crop
center and repeat the process until a valid subgraph is obtained.
At test time, we use the source node from the previous edge
prediction as the crop center.

2) Computing the Global (Visual) Features: A convolu-
tional neural network (CNN) processes the input depth image
stack of size 320×240×20, where the channels represent the
20 most recent depth images, captured at a rate of 5 Hz. The
architecture of the CNN is described in Table II. The output
of the network is a feature set of shape 1 × 1 × 512, which
can simply be reshaped into a 512-dimnension feature vector
that serves as a global feature for the graph neural network
(Sec. A-A3).

3) Graph Neural Network: The graph neural network is
composed of two sequential GN blocks and takes the node,
edge, and global features as input. The global features are
computed using the CNN described in Sec. A-A2. The update
functions φv(·), φe(·), φu(·) described in the main paper
are implemented as multi-layer perceptrons (MLPs), outlined
in Table III. The aggregation functions ρe→v(·), ρe→u(·),
ρv→u(·) are elementwise sum functions.

Layer Channels Out Kernel Stride BN

conv1 32 5× 5 2 Yes
conv2 64 5× 5 2 Yes
conv3 128 3× 3 2 Yes
conv4 256 3× 3 2 Yes
conv5 512 3× 3 2 Yes
conv6 512 3× 3 2 Yes
conv7 512 3× 2 1 No

TABLE II: Architecture of the CNN encoder used for the GLN
global (visual) feature computation and for the CNN-LSTM
behavior network.

LSTM LSTM LSTM

CNN CNN CNN

... ...

LSTM LSTM LSTM... ...

vt vt+1 vt+2

Fig. 7: An illustration of our LSTM-based behavior network.
The input at each timestep is the current depth image, and the
output is the control velocities for the robot.

B. Behavior Network

To predict velocity commands given a visual input, we use
two types of behavior networks in our experiments: a purely
reactive CNN, and a CNN-LSTM. The architecture of the
CNN behavior network is shown in Table IV, and is used for
the corridor follow and find door behaviors. The CNN-LSTM
is used for the turn left, turn right, straight behaviors, and has
the structure shown in Fig. 7. A CNN is used to encode a
single 320× 240× 1 depth image, and the features are passed
onto a two-layer long-short term memory (LSTM) [20] with
a hidden size of 512. Lastly, the output of the LSTM goes
through a fully-connected layer that outputs the translational
and angular velocities: v = [vp, vθ].

Layer Output dim BN

fc1 256 Yes
fc2 256 Yes
fc3 256 Yes
fc4 256 No

TABLE III: Architecture for the edge, node, and global feature
update functions.

Layer Channels Out Kernel Stride BN

conv1 32 5× 5 2 Yes
conv2 64 5× 5 2 Yes
conv3 128 3× 3 2 Yes
conv4 256 3× 3 2 Yes
conv5 512 3× 3 2 Yes
conv6 512 3× 3 2 Yes
conv7 2 3× 2 1 No

TABLE IV: Architecture of the CNN behavior network.

Fig. 8: Left to right: Example RGB, depth, and semantics
observations recorded with Gibson [46]. Note that in our
approach we only use the depth information.

C. Particle Filter for GLN

To improve the performance of GraphNav, we can combine
our Graph Localization Network (GLN) with a particle filter
and obtain more accurate localization predictions in a manner
similar to Dellaert et al. [10] and Fox et al. [16]. In particular,
the particle filter relies on distributions p(xt|ut, xt−1) and
p(zt|xt), where xt represents the state vector (e.g. pose or
location) at time t, ut is a known control input, and zt is a
measurement at time t.

In particular, we represent the state xt as the current node in
the topological map, and zt is the current visual observation.
For any two consecutive timesteps t and t + 1, the executed
control input (e.g. behavior) has little to no effect on the
topological location. Thus, we simplify the model and make
the following assumption about the motion model:

p(xt|ut, xt−1) = p(xt|xt−1) (1)

In our experiments, we found that a probability distribution
with p(xt = xt−1|xt−1) = 0.8 worked well (with equally
weighted probabilities on the neighbors of xt−1 and 0 for all
other nodes).

For the measurement model p(zt|xt), we make the assump-
tion that p(zt) and p(xt) are uniform distributions for all
timesteps, so the ratio p(zt)/p(xt) can be written as a constant
γ. Using Bayes rule, we obtain the following:

p(zt|xt) =
p(xt|zt)p(zt)

p(xt)

= γp(xt|zt)
∝ p(xt|zt)

We approximate p(xt|zt) using the graph localization network
(GLN) by aggregating (sum) the outgoing edge probabilities
for each node. We use the motion and measurement models
defined above and denote the GraphNav model with the
particle filter as GraphNavPF.

APPENDIX B
DATA COLLECTION AND AUTOMATED DATASET

ANNOTATION

Using the Gibson simulator [46], we sampled motion trajec-
tories with the Turtlebot robot in the Stanford 2D-3D-S dataset
[4, 3]. Data collection was achieved as follows: we provided
the ROS navigation stack with ground truth localization and

Fig. 9: Birds-eye visualization of the Area 3 floorplan where
different colors represent different semantic labels (hallway,
bathroom, office, conference room, etc.).

used it to follow navigation plans, recording the robot’s visual
observations and ground truth odometry as it moved in the en-
vironment. An example of the collected visual input is shown
in Fig. 8. After collecting the dataset, which contains 2,371
trajectories, we used an automated heuristic-based annotation
algorithm to label frames with behavior ID tags and node/edge
localizations. There are a few parameters that were used for
automated labeling, and these were determined empirically.
The datasets, annotations, and code described in this section
will be presented to the public.

A. Velocity Noise Injection

We recorded the velocity commands from the ROS naviga-
tion stack as ground truth, but injected noise into the actual
executed velocity commands provided to the robot. This was
done in order to augment the dataset with more challenging
scenarios that could be seen at test time. By using this method
of data augmentation, we increase the diversity of scenarios
the model sees at train time in the hope that this distribution
matches more closely with the test time distribution. This
method of data augmentation is similar to that used by Bojarski
et al. [6].

To perform the noise injection, we use the following for-
mula:

νnoisy = νraw + z (2)

Here, νraw represents the velocity commands from the ROS
navigation stack (which are used for training), and νnoisy
are the noisy velocity commands used to actually control the
robot during data collection. To prevent drastic changes in
the movement of the robot, we update z = [zp, zθ] at every
timestep using:

z ← 0.95z + 0.05n (3)

where n = [np, nθ] is sampled using np ∼ N (0, 0.2) and
nθ ∼ N (0, 1).

B. Room Annotations

Using labels from the Stanford 2D-3D-S dataset, we were
able to generate metric maps in the form of 2D images
showing the clutter, semantic room labels, and instance-level
room labels. An example of the semantic room labels is shown
in Fig. 9. With these metric maps, we were able to look up
the instance-level room label for the robot given a position in
the map. This was essential for the annotation and evaluation
process. For example, the first step in processing our dataset
for labels was to use the ground truth robot odometry to look
up the instance-level room labels. These labels were then used
for detecting behaviors, as explained in Sec. B-C.

C. Behavior Detection

To train our behavior networks, we required annotated
video sequences of the agent executing each behavior. After
annotation, each behavior network was trained using only the
annotated frames for that particular behavior. For example,
the corridor follow behavior was trained using a collection of
video clips from our dataset which contain the corridor follow
behavior. Throughout this section, unless otherwise indicated,
we refer to a room as any labeled instance-level region within
the Stanford 2D-3D-S environments, such as a hallway, open
space, office, or storage room.

We first processed the dataset to look for turn and straight
behaviors. To do this, we found transition points for when the
agent switched from one room to another. Given a transition
point, we then checked whether it was a turn behavior by ex-
amining the agent’s trajectory and checking if the robot rotated
by greater than 40 degrees before traveling a distance of 2 m
from the transition point. If it had rotated by over 40◦, then
this transition point was considered a turn in the corresponding
direction. For each transition point, we performed this check
twice – one in forward time and one in backwards time from
the transition point. The check with the larger rotation delta,
compared to the robot’s orientation at the transition point, was
used for determining which behavior occurred at that particular
transition point.

If no turn was detected for the transition point, we then
checked whether the agent entered an actual room (office,
conference room, pantry, bathroom, copy room, or storage
room). If so, the transition point was considered a straight
behavior. Otherwise, it was considered a corridor follow
behavior. All frames within 2 m of the agent position at the
transition point were then tagged with the behavior ID, except
frames in which the robot entered a separate room (that was
different from the transition rooms).

Next, we labeled frames with the find door behavior. Since
all of the frames were labeled with a room name from the
Stanford 2D-3D-S dataset, we could detect the first transition
from a room to a hallway for each trajectory. In this particular
case, rooms refer to offices, conference rooms, copy rooms,
storage rooms, pantries, and bathrooms. All frames starting
from the first frame of the trajectory to the transition frame
were labeled as the find door behavior.

The corridor follow behavior detection was run last. All
untagged frames that were located in openspaces, hallways,
and lounges were labeled to be the corridor follow behavior.
These labeled behavior frames were then used for training the
behavior networks.

D. Node and Edge Localization

As mentioned throughout the main paper, we annotated
the Stanford 2D-3D-S areas with topological map annotations
in the form of a graph. These node and edge annotations
were used for training the graph localization network, for
running the GTL model, and for comparing our model with
the baselines. To create the graph annotations, we wrote a
graph drawer GUI tool that allowed us to draw nodes and
edges on top of the metric map of each Stanford 2D-3D-S
area (Fig. 10). These graph annotations contain node positions
and edge orientations in the coordinate frame of the metric
map (e.g. Fig. 9). The positions and orientations were then
used for annotating the dataset trajectories with corresponding
nodes and edges in the graph.

For a given robot pose (position and orientation), we first
computed the associated node and then the associated edge. At
a high level, the node label is computed by finding the closest
node (measured with euclidean distance) to the robot that has
a similar orientation. Moreover, throughout each trajectory, we
make sure that the node for any given frame is either a direct
neighbor of the node in the previous frame or the same node
as that of the previous frame.

More specifically, the first step to computing the associated
node was to find the nearest node that satisfied a matching-
orientation requirement and a same-room requirement. A
node satisfies the matching orientation requirement if any of
its incoming or outgoing edges is within 36◦of the robot’s
orientation. The same-room requirement is satisfied if the node
is located in the same room as the agent when the agent is in
a room. If these requirements were satisfied, then we would
move on to check whether the candidate nearest node was a
valid neighbor of the node from the previous frame (or if the

Fig. 10: Topological map annotations using our graph drawer
tool.

candidate node was the same as the previous node). If so, then
we set the current frame to be associated with the candidate
node. If not, then the current and following frames were not
labeled until a frame with a valid next node was found. Once
a valid next node was found, the annotation tagging would
resume from that frame and continue on until the end of the
trajectory sequence.

After the node tagging process, the frames were annotated
with edge labels. Suppose the frames at times ti, . . . , ti+n
were labeled to be node A and the frame at ti+n+1 as node
B. In this case, the frames at times ti, . . . , ti+n were labeled
with the edge connecting node A to node B.

APPENDIX C
NAVIGATION PLAN STATISTICS

To compare our approach against other baselines, we sam-
pled navigation plans for each Stanford 2D-3D-S environment
and tested different models with them. Each navigation plan
was categorized into one of three different difficulties depend-
ing on the number of nodes in the navigation plan. A plan was
in difficulty I if it contained 10 nodes or fewer, difficulty II if it
contained 11 to 20 nodes, and difficulty III if it had more than
20 nodes. We provide an illustration of the distribution of plan
lengths (# nodes) for each area in Fig. 12. In particular, we
can compare this with the histogram of path lengths measured
in meters (Fig. 11) to see how the number of nodes correlates
with metric distance. For example, Area 5 has the longest plan
lengths measured both in meters (60 m) and number of nodes
(almost 30). Thus, it can be seen that the higher difficulty
trajectories also tend to be over longer metric distances.

Interestingly, the results in the main paper show that our
model performed the best on Area 5, which is the largest area,
with path lengths going up to 60 m. The floorplan layout of
area 5 is well structured, with spread out doorways and few
open spaces, making it easier to navigate than the other areas.

APPENDIX D
ADDITIONAL EXPERIMENTAL RESULTS

We show additional qualitative results in Fig. 13 and quan-
titative results in Table VI. Table VI shows the behavior
prediction performance for each model by comparing the
behavior prediction accuracy with the GTL model. More
specifically, during the execution of each navigation model, we
ran the node localizer in the background using the ground truth
odometry of the robot. This allowed us to compare the agent’s
current node with nodes in the planned trajectory path to find
the current ground truth behavior to execute. The reported
behavior prediction accuracy is the accuracy of the model’s
selected behavior compared with the ground truth behavior
coming from this lookup operation. This allows us to compare
our GraphNav model against the baselines with less influence
from the behavior network performance.

From Table VI, we see that the PhaseNet and BehavRNN
baseline approaches performed fairly poorly even on the areas
that were seen during training. For example, the PhaseNet
accuracies for the turn behavior were below 20% on the train

Split Accuracy

Train (Areas 1, 5, 6) 89.8
Validation (Area 3) 52.3
Test (Area 4) 31.1

TABLE V: The localization prediction accuracies from the
graph localization network on trajectories from our dataset.

areas, whereas the GraphNav model achieved 40% to 70%
accuracy. Surprisingly, the BehavRNN had accuracies of less
than 20% for the corridor follow behavior, which is the most
commonly used behavior.

In the unseen environments, the performance of the
PhaseNet and BehavRNN baselines remained fairly similar
compared to the performance in seen environments. For the
GraphNav model, the turn behavior prediction accuracies were
lower than in the seen areas, which is unsurprising since the
agent had not seen the area before. Thus, the localization
network struggled more with the unseen spaces compared
to the seen spaces. However, the find door performance still
remained very high. This indicates that the find door behavior
is robust even in previously unseen environments, and that the
localization network is very accurate at detecting when the
agent is located within the room.

Lastly, we report results for the graph localization network
prediction accuracy in Table V. The accuracy in the train
areas was very high at 89.8%, whereas the validation and test
area accuracies were substantially lower. One way to reduce
this gap between train and test performance, and to prevent
overfitting, is by diversifying the training dataset with more
environments. Currently, there are only three environments in
the training set, two of which are very similar in structure since
they come from two floors of the same building. Training with
more data from different spaces would ideally let the model
generalize better to unseen environments.

Nevertheless, our navigation system still works well and
is able to navigate in both seen and unseen environments,
outperforming the relevant baseline approaches. As shown in
Fig. 13 as well as in the supplementary video, our navigator
can traverse through complex, cluttered environments and
reach the destination without colliding. Given these results for
visual navigation using topological maps, we believe that this
is a promising direction of research and hope that our work
inspires further research in autonomous visual navigation.

0 20 40
Plan Length (meters)

0

5

10

Tr

aj
ec

to
rie

s

(a) Area 1

10 20
Plan Length (meters)

0

5

10

Tr

aj
ec

to
rie

s

(b) Area 3

0 20 40
Plan Length (meters)

0

5

10

Tr

aj
ec

to
rie

s

(c) Area 4

0 20 40 60
Plan Length (meters)

0

5

10

Tr

aj
ec

to
rie

s

(d) Area 5

10 20 30 40
Plan Length (meters)

0

5

10

Tr

aj
ec

to
rie

s

(e) Area 6

Fig. 11: Histogram of navigation plan lengths (meters) used for evaluation in each area of the Stanford 2D-3D-S dataset [4, 3].

10 20
Plan Length (# Nodes)

0

5

10

Hi
st

og
ra

m
 C

ou
nt

(a) Area 1

5 10
Plan Length (# Nodes)

0

5

10

Hi
st

og
ra

m
 C

ou
nt

(b) Area 3

5 10 15 20
Plan Length (# Nodes)

0

5

10

Hi
st

og
ra

m
 C

ou
nt

(c) Area 4

10 20 30
Plan Length (# Nodes)

0

5

10

Hi
st

og
ra

m
 C

ou
nt

(d) Area 5

5 10 15 20 25
Plan Length (# Nodes)

0

5

10

Hi
st

og
ra

m
 C

ou
nt

(e) Area 6

Fig. 12: Histogram of navigation plan lengths (# nodes) used for evaluation in each area of the Stanford 2D-3D-S dataset
[4, 3].

A1: 45.48 m A3: 9.90 m A5: 27.42 m A5: 39.8 m

Success Cases

A4: 19.43 m

Failure Case

Start Point End Point Executed Trajectory Expected Trajectory

Fig. 13: Examples of executed trajectories with the approximate navigation plan lengths. Seen environments: Areas 1, 5, 6
(A1, A5, A6). Unseen environments: Areas 3, 4 (A3, A4). Best viewed in color.

Per-Behavior Prediction Accuracies

Area ID Model cf fd tl tr s

1 (Seen) PhaseNet 57.6 (8596) 61.3 (2044) 14.6 (1536) 14.0 (1467) 100 (56)
5 (Seen) PhaseNet 39.1 (8217) 21.4 (7704) 17.5 (2407) 10.8 (1295) - (0)
6 (Seen) PhaseNet 70.3 (5494) 88.3 (2030) 16.1 (1796) 16.5 (1467) 100 (56)
1 (Seen) BehavRNN 16.3 (1716) 77.1 (952) 21.6 (361) 21.0 (391) 0 (22)
5 (Seen) BehavRNN 13.2 (1740) 64.1 (1261) 33.4 (479) 32.8 (408) - (0)
6 (Seen) BehavRNN 6.9 (1572) 75.1 (995) 28.4 (500) 42.2 (412) 0 (7)
1 (Seen) GraphNav (ours) 89.5 (15164) 91.9 (2026) 69.4 (2537) 76.0 (2066) 52.9 (221)
5 (Seen) GraphNav (ours) 89.6 (16499) 88.9 (2155) 46.6 (2732) 51.2 (2558) 50.5 (103)
6 (Seen) GraphNav (ours) 89.6 (13094) 96.0 (2063) 68.7 (2710) 58.3 (3018) 51.5 (101)
1 (Seen) GraphNavPF (ours) 95.9 (15607) 92.4 (2011) 72.6 (2434) 75.6 (2027) 54.3 (208)
5 (Seen) GraphNavPF (ours) 96.7 (19981) 95.0 (2146) 56.5 (3375) 66.4 (2870) 60.3 (252)
6 (Seen) GraphNavPF (ours) 96.1 (14508) 96.8 (2001) 75.0 (3105) 73.0 (3241) 67.9 (112)
1 (Seen) GTL† 100 (16898) 100 (1965) 100 (2731) 100 (2175) 100 (137)
5 (Seen) GTL† 100 (24194) 100 (2210) 100 (3585) 100 (3241) 100 (303)
6 (Seen) GTL† 100 (15005) 100 (2061) 100 (3006) 100 (3641) 100 (126)

3 (Unseen) PhaseNet 57.0 (4614) 92.6 (1305) 15.0 (1425) 19.9 (2051) 51.6 (64)
3 (Unseen) BehavRNN 14.8 (2118) 62.4 (681) 55.2 (630) 39.3 (732) 0 (13)
3 (Unseen) GraphNav (ours) 78.8 (7208) 88.9 (1374) 36.3 (1811) 25.0 (2576) 28.3 (106)
3 (Unseen) GraphNavPF (ours) 85.7 (8552) 99.2 (1314) 44.0 (2231) 40.9 (2534) 50.0 (122)
3 (Unseen) GTL† 100 (9214) 100 (1468) 100 (2100) 100 (2462) 100 (130)

4 (Unseen) PhaseNet 62.6 (8200) 50.9 (1395) 15.0 (1545) 23.2 (2083) - (0)
4 (Unseen) BehavRNN 16.9 (1792) 66.4 (657) 33.5 (382) 21.0 (509) - (0)
4 (Unseen) GraphNav (ours) 76.2 (10793) 91.1 (1486) 31.0 (2169) 21.6 (2245) - (0)
4 (Unseen) GraphNavPF (ours) 73.6 (9781) 89.6 (1417) 32.9 (2169) 37.3 (2092) - (0)
4 (Unseen) GTL† 100 (16554) 100 (1347) 100 (2888) 100 (2819) - (0)

TABLE VI: Performance comparison using success rate (SR) and average plan completion (PC). Numbers in parentheses
represent total number of attempts for that entry. The † indicates that GTL utilizes additional ground truth information.

	I Introduction
	II Related Work
	III Problem Setup
	IV Topological Map Design
	V Method
	V-A Preliminaries on Graph Neural Networks
	V-B Graph Representation
	V-C Graph Localization Network (GLN)
	V-C1 Computing the Global (Visual) Features
	V-C2 Subgraph Cropping
	V-C3 Graph Neural Network Prediction

	V-D Behavior Networks

	VI Experimental Setup
	VI-A Dataset Collection
	VI-B Navigation Evaluation Suite
	VI-B1 Generation of Navigation Tasks
	VI-B2 Evaluation Metrics

	VI-C Implementation Details

	VII Experimental Results
	VII-A Overall Navigation Performance
	VII-B Performance of the Behavior Networks

	VIII Conclusion and Future Work
	IX Acknowledgements
	Appendix A: Implementation Details
	A-A Graph Localization Network (GLN)
	A-A1 Subgraph Cropping
	A-A2 Computing the Global (Visual) Features
	A-A3 Graph Neural Network

	A-B Behavior Network
	A-C Particle Filter for GLN

	Appendix B: Data Collection and Automated Dataset Annotation
	B-A Velocity Noise Injection
	B-B Room Annotations
	B-C Behavior Detection
	B-D Node and Edge Localization

	Appendix C: Navigation Plan Statistics
	Appendix D: Additional Experimental Results

