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ABSTRACT 
Robots’ spatial positioning is a useful communication modality 
in social interactions. For example, in the context of group con-
versations, certain types of positioning signal membership to the 
group interaction. How does robot embodiment infuence these 
perceptions? To investigate this question, we conducted an online 
study in which participants observed renderings of several robots 
in a social environment, and judged whether the robots were posi-
tioned to take part in a group conversation with other humans in 
the scene. Our results suggest that robot embodiment can infuence 
perceptions of conversational group membership. An important 
factor to consider in this regard is whether robot embodiment leads 
to a discernible orientation for the agent. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; 
• Computing methodologies → Spatial and physical reason-
ing. 
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1 INTRODUCTION 
Group interactions are an important area of investigation in Human-
Robot Interaction (HRI) [15]. One way of determining whether 
robots are considered a social member of a particular group is their 
spatial positioning. In the case of conversational groups, for exam-
ple, prior work in social psychology has shown that conversations 
lead to structured spatial patterns of behavior which are sustained 
during these interactions [8], e.g., face-to-face or circular spatial ar-
rangements. Various studies have shown that these spatial patterns 
translate to the context of human-robot interactions [1, 7, 9, 24]. 
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Recently, data-driven methods to recognize typical spatial pat-
terns of behavior in human-robot conversations have been built 
upon datasets of human interactions [6, 19]. Likewise, methods for 
robots to conform to these conversational patterns have been pro-
posed in HRI by modeling human spatial behavior [12, 17, 25, 28]. 
However, it is unclear how robots’ embodiment may afect human 
perceptions of spatial behavior during social group conversations. 
In the context of proxemics [5], prior work in HRI suggests that fac-
tors such as a robot’s humanoid appearance [26] and robots’ gaze 
(along with their likeability) can infuence human-robot distancing 
[14]. This makes us believe that embodiment can alter human per-
ception of robots’ spatial positioning in social contexts and, thus, 
infuence perceptions of conversational group membership in HRI. 

We conducted an online study to investigate how robot em-
bodiment infuences human perception of conversational group 
membership. We considered various types of robots in our study, 
from more anthropomorphic platforms like Pepper and Kuri to 
less human-like robots like the Turtlebot 3 or Jackal (Fig. 1). As a 
baseline, we compared perceptions of spatial positioning by robots 
with spatial positioning by virtual humans. Our results suggest that 
robot embodiment can infuence human conception of personal 
space and the likelihood that people will consider various agents 
as part of conversational groups based on their spatial positioning. 

2 RELATED WORK 
Proxemics. Signifcant work has investigated how people socially 
perceive and use the physical space around them. Hall built a gen-
eral framework for the primary spatial zones people fnd themselves 
in based on their interactions [5]. This framework includes zones 
of intimate space, personal space, social space, and public space. Re-
search suggests that the size of these zones can vary across cultural 
contexts and based on human personal preferences [5, 18]. Further-
more, researchers have investigated how proxemic zones difer for 
robots as opposed to other humans [13, 14]. Walters et. al made 
adjustments to previously known proxemic distances based on fac-
tors such as robot appearance, preferences, interaction context, and 
situation [26]. Overall, they found that people generally preferred 
more humanoid appearance robots to keep a further distance away 
than mechanoid robots. However, the height of the robots consid-
ered in their study did not impact these preferences. Worth noting, 
users’ gender may infuence perceptions of proxemics in HRI [20]. 

Conversational Formations. Face Formations (or F-formations) 
are spatial patterns of human behavior that organically arise during 
group conversations [8]. They are a consequence of people needing 
to be close to each other to talk in conversation or engage in an 
interaction that requires a common, focused point of attention. 
Classic F-formations include face-to-face or shoulder-to-shoulder 
spatial arrangements in smaller groups. Circular arrangements are 
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Figure 1: Images a, b, c and d show two real conversational groups from the Cocktail Party dataset and two fake groups, 
respectively. Image a2 shows a top-down view of a1, b2 shows a top-down view of b1, and c was generated from a’s data. The 
middle area shows sections of b1 and b2 for all the agents considered in the study. The room is approx. 4.8 × 6.0 meters. 

more typical for larger groups. Other factors like environmental 
constraints may also alter how people congregate socially in groups 
[2, 11, 21]. In our work, we leverage data of naturalistic human 
conversational groups to render visual stimuli for our study. 

Robot Embodiment. Robots are known to be perceived difer-
ently based upon their physical presence and appearance [3]. For 
instance, Li et al. discovered that people were more comfortable 
with being close to real-life robots as opposed to robots rendered in 
virtual reality, and rated the appearance of real-life robots higher 
[10]. Moreover, people tend to like robots that have humanoid ap-
pearances more than those with basic mechanical appearances, 
both in static images and when robots performed simple dynamic 
actions [27]. Our study expands prior work on robot embodiment 
by investigating how it may afect human perception of robots’ 
positioning in relation to conversational groups. 

3 METHOD 
We investigated how people perceive several robots and their mem-
bership to group conversations based on their poses in a social 
environment. To this end, we modeled in 3D the environment of 
the Cocktail Party dataset [29], a popular dataset for conversational 
group detection [16, 19, 23]. Then, we rendered 20 conversational 
groups from the dataset in the environment using the Unity game 
engine. This corresponded to 5 sets of 4 groups with 2, 3, 4, 5, and 
6 people each. For the renderings, we varied the 3D model used to 
represent one of the agents. This agent could be a female character, 
a male character or 6 diferent types of robots (Fig. 1). Through these 
variations we aimed to study the efect of diferent embodiments 
on perceptions of spatial behavior and social interactions. 

To gather human opinions in more diverse settings, we purpose-
fully generated additional renderings of “fake” groups from the 
above data. For conversational groups with less than six members, 
we replaced the pose of the chosen agent with the pose of another 
agent in the dataset who was not part of the original group that 
was rendered in the scene. For groups with six members, which 
included all social interactants in the dataset, we rotated the orien-
tation of the chosen agent such that it was opposite to the center 
of the group. This resulted in an atypical spatial pattern for social 
conversations [8]. Figure 1 (right) shows two example fake groups 
where the female character is oddly positioned in the scene. 

Study Design and Hypotheses. We designed the study with a 
20 × 8 × 2 mixed design, considering Groups (4 x 5 group sizes), 
Agent (2 human agents and 6 robots), and rendering Type (real or 
fake group) as independent variables. All the participants evaluated 
all the groups, but only one agent and one type of rendering. We 
hypothesized that: 

H1. People would more easily identify the orientation of the agents 
with a face (Female, Male, Pepper, Kuri, Fetch) than the orientation 
of the other agents (Jackal, Turtlebot) in the renderings. 

H2. Perceptions of the agents being part of a conversational group 
would be higher with the real groups than with the fake groups. 
This assumption follows from the design of our visual stimuli. 

H3. As a corollary of H1, the agents with a face (Female, Male, 
Pepper, Kuri, Fetch) would be more often identifed as being part of 
real groups based on their pose in the scene than the other agents 
(Jackal, Turtlebot). Also, the latter agents would be more often 
identifed as being part of fake groups than the former agents. 

H4. The robots with the widest bases (Pepper, Fetch and Jackal) 
would be more often perceived as standing too close to virtual 
humans to socially engage with them in comparison to the other 
agents. This hypothesis is complementary to H3, as it focuses more 
on proxemics [5] than group formations. The assumption was mo-
tivated by some of the robots considered in our study being wider 
than the humans that originally generated the Cocktail Party data. 

Procedure. As approved by our Institutional Review Board, we 
ran our study as an online survey. The survey frst gathered demo-
graphics data. Then, it showed renderings of the 20 (real or fake) 
groups chosen for our study, with one of the 8 agents displayed in 
them. For each group, the survey asked the participants to visually 
identify the agent in the rendered scene. Next, it asked to rate a 
number of statements about the pose of this agent relative to the 
other humans. At the end of the survey, the participants provided 
their opinion about how hard it was to complete the survey based 
on the appearance of the specifc agent that they experienced. The 
participants were paid $2 USD for completing the survey. 

Image Renderings. We leveraged tools from the Social Environ-
ment for Autonomous Navigation [22] to generate our renderings 
in Unity. More specifcally, we created two separate cameras in the 



Unity scene to capture the Cocktail Party environment from over-
head and side angles, such that participants could easily perceive 
the agents’ spatial positioning relative to one another. We then 
used a ROS script to load the pose of the agents in the 20 groups, 
pass these poses to Unity via ROS#, receive the rendered images 
in return, and save them to disk for use in our survey. We utilized 
the Microsoft Rocketbox avatar library to render the human agents 
[4]. For the robots, we used 3D models from open-source Universal 
Robot Description Files (URDFs). 

Measures. We gathered three types of measures via the survey: 
(1) For H1, we asked the participants to indicate for each rendered 
group with a given agent X if “X is oriented towards other human(s) 
in the scene.” They could choose among 3 answers: “Yes”, “No”, and 
“I cannot tell the orientation of X from the scene views.” Also, we 
asked the participants at the end of the survey to indicate if “the 
survey was difcult to complete because of the appearance of X” using 
a 7 point responding format. We gave participants the option to 
further explain their answer to the latter question via a text box. 

(2) For H2 and H3, we gathered participant opinions in regards 
to whether they agreed with the following statements about the 
given agent X: “X is too far from the human(s) in the scene to engage 
naturally in a group conversation with them”; “X is in a location that 
makes it look like (s)he is in a group conversation with everybody 
else in the scene”; “X is positioned to socially engage with the hu-
man(s) in the scene”; and “X is orienting in an unusual way to be 
having a conversation with everybody else in the scene.” Ratings were 
obtained using a 7 point Likert responding format from “strongly 
disagree” to “strongly agree.” We combined these ratings into an 
“In Group” measure based on the position and orientation of the 
agents (Cronbach’s alpha was 0.87). 

(3) For H4, we asked the participants to indicate their agreement 
with “X is uncomfortably too close to a human to socially engage with 
him/her in the scene” using a 7 point Likert responding format. 

Participants. We recruited 480 participants via Prolifc, with 240 
female participants, 238 male participants, and two participants 
who indicated "Other" gender. We excluded the last two participants 
from our analyses (Sec. 4) because their gender did not ft the two 
prescreening categories of male/female. We randomly assigned 
males, and then females, to each combination of Agent and Type 
such that there was roughly the same amount of participants per 
condition. Overall, each Agent/Type combination had about 30 
participants split roughly evenly between males and females. 

4 RESULTS 
We conducted analyses on our measures considering Agent (8 lev-
els), Type (2 levels), and participant Gender (2 levels) as main efects. 
For image ratings, we also considered Groups (20 levels) as main 
efect, and Participant ID as random efect. We used Student’s t-tests 
or Tukey HSD tests for post-hoc comparisons when appropriate. 

Agent’s Orientation. The ratings for “the survey was difcult to 
complete because of the (agent’s) appearance” were heavily skewed 
towards low ratings, so we analyzed them using non-parametric 
Kruskal-Wallis tests. The tests indicated that only Agent had a signif-
icant efect on the ratings, � 2 (7) = 47.81, p< 0.0001. A Tukey HSD 

post-hoc test indicated that the ratings for the Turtlebot (M= 3.13, 
SE= 0.267) were signifcantly higher than for all other agents except 
for the Jackal (M= 2.66, S� = 0.244). Also, Jackal had signifcantly 
higher ratings than the Female agent (M= 1.70, SE= 0.163), Kuri 
(M= 1.67, SE= 0.146), the Tall Fetch (M= 1.63, SE= 0.118), and the 
Male agent (M= 1.5, SE= 0.138). These signifcant diferences were 
further confrmed with a non-parametric Steel-Dwass test. These 
results provide partial support for H1. 

Among those who found the survey difcult, the responses fell 
into two broad categories: some of the agents had orientations that 
were difcult to discern based on their appearance, and participants 
had concerns about the agents’ appearance and capabilities to be 
socially engaged with humans. The former category was more 
apparent for Turtlebot and Jackal, which respectively had 16 and 
9 responses out of 34 commentaries (Short Fetch had 5, Kuri had 
2, Pepper had 1, and Female had 1). For example, a participant 
said about Jackal that “It was difcult to see where the front and 
the back is,” and another said about Turtlebot that “It was hard 
to tell where it was turned to.” In regard to concerns about social 
engagement, Jackal garnered most of the responses in this category 
with 8 out of 23 comments (Short Fetch had 5, Tall Fetch had 4, Kuri 
had 3, and Turtlebot had 2, and Pepper had 1). People said things 
about Jackal such as “When picturing a bunch of humans engaged in 
social interaction, throwing in a shin-height robot with no humanlike 
characteristics made it hard to imagine the scenarios,” “It looks like a 
roomba-type thing so its not very believable that it can even socially 
interact with people in any capacity,” and “It’s boxlike appearance and 
lack of anthropomorphic features made it hard to imagine conversing 
with.” Taken together, these results align with H1, as Jackal and 
Turtlebot were the least human-like agents and seemed to cause the 
most confusion. However, we acknowledge that they might have 
been infuenced by our specifc choice of visual stimuli. Images are 
static and may not fully convey how the agents could take part in 
social conversations. 

Answers to whether the agent of interest was oriented towards 
the other humans in each scene provided further support for H1. 
Because these ratings were a repeated measure, we analyzed them 
using a Binomial Generalized Mixed Linear Model with a logit link 
function. To this end, we computed whether the given agent was 
orienting towards the other humans in the scene using the agents’ 
poses: this was assumed to be true when the agent was oriented 
within ±60◦ towards the average position of the other humans. 
Then, we counted Yes/No answers that matched our defnition as 
correct, and labelled both incompatible and unsure responses as 
incorrect. Interestingly, Agent had signifcant efects on identifying 
the orientation correctly, F[7, 482.5] = 10.71 (p< 0.0001). As shown 
in Fig. 2 (left), Jackal and Turtlebot led to signifcantly fewer correct 
answers than all other agents according to a Tukey HSD post-hoc 
test. Also, Groups (F[19, 9057] = 45.30, p< 0.0001), the interaction 
between Gender and Type (F[1, 432.8] = 5.35, p= 0.02), and the 
interaction of Agent and Type (F[7, 433.3] = 6.27, p< 0.0001) were 
signifcant. The post-hoc tests showed pairwise diferences across 
groups, which we attribute to our specifc choice for the study. In 
addition, there were signifcant diferences in the responses by Type 
for male participants and for the Turtlebot. We omit further details 
due to limited space. 



1 •• 1 
1181111 

Agent
Fake Real

Type

Turt
leb

ot
Jac

ka
l

Male

Fem
ale

Sho
rt F

etc
h

Tall
 Fetc

h
Kuri

Pep
pe

r

In
 G

ro
up

0

1

2

3

4

5

6

7

Turt
leb

ot
Jac

ka
l

Male

Fem
ale

Sho
rt F

etc
h

Tall
 Fetc

h
Kuri

Pep
pe

r 0

1

2

3

4

5

6

7

Turt
leb

ot
Jac

ka
l

Male

Fem
ale

Sho
rt F

etc
h

Tall
 Fetc

h
Kuri

Pep
pe

r

U
nc

om
fo

rta
bl

y 
C

lo
se

O
ri

en
ta

tio
n 

Pe
rc

ep
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Turt
leb

ot
Jac

ka
l

Male

Fem
ale

Sho
rt F

etc
h

Tall
 Fetc

h
Kuri

Pep
pe

r

Figure 2: The proportion of images in which the participants identifed correctly whether the agents oriented toward the other 
humans in the rendering (left), participants’ combined ratings for the agent being in a group with the humans (middle), and 
participant ratings for agents being “uncomfortably too close to a human to socially engage with him/her in the scene” (right). 

Perceptions of Group Membership. We conducted a Restricted 
Maximum Likelihood (REML) analysis on the In Group measure to 
evaluate H2 and H3. We found that Type (F[1, 453]=824.97, p<0.0001) 
and Groups (F[19, 9063]=222.65, p<0.0001) had signifcant efects 
on the results. A t-test on Type supported H2: the real groups led 
to signifcantly higher In Group perceptions (M=5.10, SE=0.022) 
than the fake groups (M=3.39, SE=0.024). The post-hoc test on 
Groups also revealed signifcant diferences, which we attribute to 
our specifc choice of conversational groups as before. 

We also found that the interaction between Agent and Type led 
to signifcant diferences for the In Group results, F[7, 453] = 4.06 
(p<0.0002). A Tukey HSD test indicated that the ratings for all 
the agents in the real groups were signifcantly higher than for 
them in the fake groups. For the fake groups, the ratings for the 
Turtlebot (M= 3.70, SE= 0.073) and Jackal (M= 3.66, SE= 0.070) 
were signifcantly higher than for the Male agent (M= 3.06, SE= 
0.062), as shown in Fig. 2 (middle). The results partially support H3 
for the fake groups, but provide no evidence for the real groups. 

Social Distancing. A REML analysis on perceptions of the agents 
being “uncomfortably too close to a human to socially engage” pro-
vided partial support for H4. Agent (F[7, 453]=3.93, p=0.0004), Type 
(F[1, 453]=85.05, p<0.0001), Group (F[1, 453]=85.05, p<0.0001), and 
Gender (F[1. 453]=7.51, p<0.0064) all had signifcant efects on these 
perceptions. A Tukey HSD test on Agent showed that the ratings 
were signifcantly higher for Jackal (M= 2.89, SE= 0.053) than the 
Tall Fetch (M= 2.40, SE= 0.054), Kuri (M= 2.30, SE= 0.050), the 
Male agent (M= 2.23, SE= 0.051), and the Female agent (M= 2.18, 
SE= 0.048). These results are shown in Fig. 2 (right). We were sur-
prised by the small Turtlebot having ratings comparable to Pepper. 
Perhaps this could be explained by the fact that some people had a 
hard time imagining interacting with the Turtlebot. For example, 
one participant indicated that “The size of it [Turtlebot] would be an 
issue. Having to look towards the ground would be problematic.” 

In regard to Type, ratings for the Real groups (M=2.81, SE=0.022) 
were signifcantly higher than for Fake groups (M=2.07, SE=0.028). 
This diference can be explained by the Fake groups often having 
agents away from a group. Lastly, in terms of participant Gender, 
the post-hoc test suggested that females (M=2.34, SE=0.026) gave 
signifcantly lower ratings than males (M=2.55, SE=0.026). 

5 LIMITATIONS & FUTURE WORK 
Our work focused on evaluating the perception of specifc agents in 
group formations originally established by humans. Expanding the 
set of agents and using human-robot interaction groups instead are 
interesting directions for future work. Also, the visual stimuli that 
we used for our study was static. The images of social environments 
omitted details about the motion of the agents. In the future, we 
would like to extend this type of evaluations to interactive HRI 
simulations, like [22], in which participants can observe the motion 
of the robots as well. We would also like to expand our collected 
data to broader categories of gender, as we had to omit the two non-
binary responses we received from our analysis due to the extremely 
small sample size. Importantly, further experiments are needed to 
validate our results in in-person human-robot interactions. 

6 CONCLUSION 
We explored the intersection between spatial positioning and em-
bodiment in perceptions of human-robot conversational groups 
with two or more interactants. Our fndings provide concrete evi-
dence that robot embodiment can infuence perceptions of spatial 
positioning in these groups. Further, our fndings suggest that an 
important factor to consider in this regard is whether robot embodi-
ment leads to a discernible orientation for the agent. Taken together, 
this means that it is important to consider robot embodiment when 
investigating spatial patterns of behavior in HRI. Also, researchers 
should carefully consider the assumption that human interaction 
data is a valid source of examples for creating perception models 
to reason about human-robot spatial behavior, as well as for imple-
menting decision-making algorithms for robots to adapt to spatial 
formations. While people might reason about the spatial behavior 
of robots in a similar way to how they reason about the behavior of 
humans in many cases [7, 9], robot embodiment might alter these 
perceptions in some cases, resulting in diferent expectations. 
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