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ABSTRACT
Prior work in human-autonomy interaction has focused on plant
systems that operate in highly structured environments. In contrast,
many human-robot interaction (HRI) tasks are dynamic and unstruc-
tured, occurring in the open world. It is our belief that methods
developed for the measurement and modeling of trust in traditional
automation need alteration in order to be useful for HRI. Therefore,
it is important to characterize the factors in HRI that influence trust.
This study focused on the influence of changing autonomy reliability.
Participants experienced a set of challenging robot handling scenar-
ios that forced autonomy use and kept them focused on autonomy
performance. The counterbalanced experiment included scenarios
with different low reliability windows so that we could examine
how drops in reliability altered trust and use of autonomy. Drops in
reliability were shown to affect trust, the frequency and timing of
autonomy mode switching, as well as participants’ self-assessments
of performance. A regression analysis on a number of robot, per-
sonal, and scenario factors revealed that participants tie trust more
strongly to their own actions rather than robot performance.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human factors

General Terms
Experimentation, performance

Keywords
Trust, automation, experiments

1. INTRODUCTION
One of the key factors for the acceptance and safe deployment

of robots is the degree to which a user trusts the robot. If trust
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can be modeled, the model can be used to design robot interfaces
and behaviors that foster appropriate levels of trust. Mobile robots,
especially those not designed for social interaction, are particularly
interesting since they are likely to be task-oriented and therefore
used for time-dependent activities, capable of damaging objects
and hurting people, and unable to express their intent to bystanders
(e.g., [18]).

In their survey of trust and automation research, Lee and See
define trust as “the attitude that an agent will help achieve an indi-
vidual’s goals in a situation characterized by uncertainty and vulner-
ability” [13]. A person’s level of trust of an automated system is a
key factor that influences their use of that system: an inappropriate
level of trust may result in the misuse or disuse of automation [13].

The broad range of automation research provides a context for
examining issues of trust with robots. However, there are a number
of factors that limit how well this work generalizes to the robotics
domain. For example, studies of automated systems have tended
to utilize systems such as autopilots, flight management systems,
vision systems for target or obstacle identification, and factory con-
trol systems [13]. Participants interact with a simulated system,
which allows experimenters to inject errors and observe how par-
ticipants’ levels of trust of and use of the system change as a result.
The systems used in these experiments generally do not have a
physical embodiment and do not interact with the physical world.
Furthermore, these automated systems tend to be designed for rigid
tasks; that is, each system performs only one very specific type of
task. In contrast, many HRI tasks are dynamic and unstructured,
occurring in the open world. For example, an operator supervising a
remote, autonomous mobile robot must contend with noisy sensing,
incomplete perception, unpredictable environments, and bystanders.

In this work, we have investigated how changing the robot’s
reliability influences people’s use of robot autonomy and their trust
in the robot system through experiments with participants operating
a real robot. The experiment, described in detail below, was designed
to have a high workload so that the participants would need to use
the autonomous capabilities of the robot in order to complete the
task in time and to be able to complete the secondary task. We
hypothesized that people would trust a robot system less when its
reliability in autonomous mode decreased, switching to a manual
mode. We wanted to determine how long it would take participants
to switch back to autonomous mode after the robot’s reliability
recovered. We further hypothesized that the timing of the reliability
decreases would influence trust in the robot’s autonomy.



2. PRIOR WORK
Parasuraman and Riley define automation as “the execution by

a machine agent (usually a computer) of a function that was previ-
ously carried out by a human” [19]. Automation has traditionally
been employed in systems that are complicated, tedious, or time
critical, but it has also been used for economic reasons [19]. When
automation was first introduced in the 1930’s, its use was limited to
large industries; however, at the present, automation can be found
in many places, from home appliances to nuclear power plants.

Automation has always had weaknesses: namely, it has only been
effective in well-structured and controlled environments and con-
tinues to remain so. To avoid catastrophic failures in safety critical
systems due to either flaws or limitations of automation, an operator
must be present at all times to take control of the system. Situations
of this kind in which a human operator is working with an auto-
mated system are referred to as “human-in-the-loop control.” While
utilizing a human operator may be beneficial in certain situations,
addressing the inadequacies of automation for the human-in-the-
loop control creates a different set of problems. When an operator
is added to the system, improving the overall system performance
requires more than simply optimizing operator performance and,
separately, optimizing automation performance. The interaction
between the two needs to be considered as well.

Researchers have shown that trust influences operators’ use of
automation (e.g., [3, 4, 10, 12, 16, 21]): the more operators trust
automation, the more they tend to use it. Moreover, if an operator
trusts his own abilities more than those of the automated system, he
tends to choose manual control. A user’s trust in his own capabilities
is most often referred to as “self-confidence.”

For several decades, researchers in the human automation interac-
tion field have examined the factors which influence people’s trust
of automated systems (see [13] for an overview) and how this level
of trust, in turn, affects the way in which people use, misuse, or
disuse automation. Specifically, Dzindolet et al. [4] demonstrated
the impact of system performance on user trust. The results of their
study indicated that while users initially placed trust in a decision
aid and agreed with its suggestions, as users observed the system
making errors they would distrust even a generally high-performing
aid unless provided with reasons as to why the errors had occurred.
Providing these reasons increased trust in the automated aid, even
when the aid performed poorly.

Additional factors contributing to a user’s trust of an automated
system include the recency of errors made by the system [22], the
user’s prior knowledge about the system’s performance [22], the
user’s knowledge of the capabilities of the system [22], the user’s
expectations of the system’s performance [22], the usability of the
interface [1], and situation awareness gained through using a system
[14]. Atoyan et al. [1] found that interface design plays an important
role in influencing users’ trust in automation.

Some studies have reported a lag between changes in trust and
self-confidence and an actual change in allocation strategy; this lag
is referred to as “inertia” [12]. When the user changes the allocation
strategy, the performance of the system inevitably changes. For
the feedback loop to close, the user needs to observe this change.
Depending on the system, there might be a significant time delay
before the user observes the change in performance [4].

To date, there has been little work examining issues of trust
with non-social robots, although some work has been conducted
involving simulated robots. Dassonville et al. [2] conducted a study
in which participants used a joystick to control a simulated PUMA
arm. Errors were introduced into the simulation, and participants
were asked to rate the reliability, performance, and predictability of
the joystick’s behavior (as well as how difficult it was to make such

ratings). The results of the study were consistent with prior work in
autonomous systems that suggest that the user’s self-confidence is a
significant factor which influences use of such systems.

Freedy et al. [6] examined trust in the context of mixed-initiative
command and control systems using the MITPAS (Mixed-Initiative
Team Performance Assessment System) Simulation Environment.
The researchers constructed a quantitative measure of trust by as-
suming that people use a rational decision model such that “trust
behavior is reflected by the expected value of the decisions whether
to allocate control to the robots on the basis of past robot behavior
and the risk associated with autonomous robot control” [6]. Par-
ticipants assumed the role of a controller of an unmanned ground
vehicle (UGV). The UGV autonomously targeted and fired, but par-
ticipants were instructed to take control of the UGV if its behaviors
would lead to a time delay or a failure. The experimenters varied
the competency of the UGV’s firing behavior and recorded partic-
ipants’ choices to override the UGV. The results suggested that if
participants could gauge whether the UGV was very competent or
incompetent, they adjusted their behavior accordingly. This adjust-
ment implied that the participants trusted the system to continue to
maintain the same level of competence. It was more difficult for
users to adjust their behavior when the system showed indeterminate
competence. More work needs to be done to determine how these
results would generalize to physical robots in the real world.

While relatively little work has been done investigating trust in
robots, there is a large body of research on trust in different types
of technologies. For example, Song et al. [23] developed a neural
network-based trust model for understanding users’ acceptance of
recommendations from a system of heterogeneous agents. Another
agent-related trust model was developed by Rehak et al. [20], who
used fuzzy numbers to represent trust in cooperating ubiquitous
devices. McKnight et al. [15] developed a trust model to understand
users’ acceptance of a website offering legal advice. Because we are
interested in developing a model of trust for human-robot interaction,
we have restricted the scope to trust models that were developed for
other technology domains.

Riley hypothesized a general model for trust in automation, in-
cluding how different factors influence each other and ultimately
the operator’s reliance on automation [21]. We believe that trust
models developed for traditional automation need alteration in order
to be useful for HRI. Like most, Riley’s model does not consider
some factors that are relevant to robots such as interface usability,
proximity to robot (co-located or remote-located), situation aware-
ness, and dynamics of the operating environment. To advance the
field, a systematic study of the factors that could influence trust in
HRI is necessary to build trust models in this domain. To this effect
we conducted a study with a real robot with dynamic workload,
complex task, and variable reliability.

3. METHODOLOGY
To determine how changing reliability impacts a person’s use

of autonomy and trust in a robot system, we conducted the same
set of experiments at University of Massachusetts Lowell (UML)
and Carnegie Mellon University (CMU).1 Twelve participants were
recruited at both sites. The average age of the participants at UML
was 23.6 years (SD = 6.1) and at CMU was 30.6 years (SD =
14.2). All 24 participants were classified as novice robot users as
none of them had any prior experience controlling remote robots.

1Unless explicitly mentioned, all of the parameters were identical
between the two sites.



Figure 1: The interface and the gamepad used to control the robot.

3.1 Robot system
Two iRobot ATRV-JR robots were used for this experiment, one

at UML and the other at CMU. There was a camera mounted on the
front of the robots on a Directed Perception PTU-D46-17 pan-tilt
unit and another camera was mounted on the rear. For distance
sensing, a SICK LMS200 was used on the front and a Hokuyo URG-
04LX laser was mounted on the back. The robots had computers
with similar capabilities and ran the same code base.

Figure 1 shows the user interface (UI) used to control the robots.
The video from the front camera was displayed in the middle, the
video from the back camera was displayed on the top right (mirrored
to simulate a rear view mirror in a car). The distance information
from both lasers was displayed on the bottom around a graphic
of the robot. The map of the course with the pose of the robot
was displayed on the left. Using the gamepad shown in Figure 1,
participants were able to drive the robot, control the pan tilt unit for
the front camera, select the autonomy mode, turn the brakes on or
off, recenter the camera, and acknowledge the secondary tasks.

3.2 Tasks
The participants were asked to drive the robot as quickly as they

could along a specified path, searching for victims, not hitting ob-
jects in the course, and responding to the secondary tasks. To create
additional workload, simulated sensors for CO2 and temperature
were used. The participants were not told that the sensors were not
real. They were also informed that the robot’s performance was
not influenced in any way by changes in temperature and carbon
dioxide. The values from the sensors were displayed on the UI (Fig-
ure 1), which the participants were asked to monitor. Participants
were asked to acknowledge high CO2 and temperature values by
pressing the corresponding buttons on the gamepad. The values
were considered high when their values were above the threshold
lines on the secondary task indicators (Figure 1); values over the
threshold were indicated by changing the color of the bars from
light blue to red to assist the participants in recognizing the change.
The level of workload was varied by changing the frequency with
which the values crossed the threshold. The simulated sampling rate
for the sensors was kept steady.

3.3 Test course
Figure 2 shows the course used at UML. The course at CMU had

the same length, layout for the boxes, and driving clearances. Both
courses were set in hallways with little foot traffic. The courses were
approximately 18 meters (60 feet) long and had 5 obstacles (boxes)
placed about 2.75 meters (9 feet) from each other. The width of the
course at UML was 2.43 meters (8 feet), and the width of the course
at CMU was 1.98 meters (6.5 feet). The discrepancy in the hallway
widths was compensated by using 61 cm (24 inch) wide boxes at
UML and 15.2 cm (6 inch) wide boxes at CMU. The clearance on
either side of the boxes was 0.9 meters (3 feet), and the robots were
0.66 meters (26 inches) wide.

The start and end positions were the same for each run. For each
run, the participants were asked to follow a set path. We designed
five different paths based on the following criteria:

• The length of each path must be the same (∼61 meters (200
feet)).

• The number of u-turns in a path must be the same (3).

• The number of transitions from the left side of the course to
the right and vice versa must be the same (3).

As the maps were similar in difficulty and length, we did not coun-
terbalance paths for the participants. Instead, paths were selected
based on a randomly generated sequence. A sample path is shown
in green in Figure 2.

Text labels were placed on top of the boxes to indicate the path
ahead. Since the boxes at UML were wide, similar labels were
placed on both edges of the face as shown in Figure 2 to make it
easy for the participants to read the labels as they went past the boxes.
The labels indicated ‘left,’ ‘right,’ or ‘uturn.’ The directions were
padded with additional characters to prevent the participants from
recognizing the label without reading them. Figure 2 shows the two
types of labels that were used. The labels with white background
(referred to as white labels) were to be followed for the first half of
the entire length and the labels with black background (referred to
as black labels) for the second half. The transition from following
the white labels to black labels was indicated to the participants via
the UI. When the participants were supposed to follow the black



Figure 2: The top down view of the course used for the experiments (left) and the photo looking down the hallway (right).

labels the background for the barcode values (shown in Figure 1)
would turn black. Two sets of labels were necessary to prevent the
participants from driving in an infinite loop.

The boxes also had barcodes made from retro-reflective tapes
that the robot could read (Figure 2). The robot would display the
contents of the bar code on the UI. However, the paths for each run
were hard coded because the barcodes could not be consistently read
by the robot. While the barcodes were not used by the robot, the par-
ticipants were told that the robot read the barcodes to determine the
path ahead, just like they read the labels. Based on a constant video
compression rate, sampling resolution, and the font size, the labels
could be read from about 1 meter (3 feet) away. The robot was set
to simulate reading the label from approximately the same distance.
The participants were informed that, at times, the robot might make
a mistake reading the barcodes and that they should ensure that the
direction read by the robot is correct. The participants were also told
that if the robot did make a mistake in reading the barcode, it would
proceed to pass the next box on the incorrect side, resulting in the
participant being charged with an error on their score (see below).

The course also had four simulated victims. These victims were
represented using text labels like the one shown in Figure 2. The
victim tags were placed on the walls of the course between 0.7 me-
ters (2.5 feet) and 1.8 meters (6 feet) from the floor. The victim
locations were paired with the paths and were never placed in the
same location during the participant’s five runs. While there was
a number associated with each victim, the participants were told
to ignore the number while reporting the victims. Whenever the
participants found a new victim, they were told to inform the experi-
menter that they had found a victim. They were explicitly instructed
to only report victims they have not reported before.

3.4 Autonomy modes
The participants could operate the robot in one of two autonomy

modes: robot assisted mode or fully autonomous mode. The par-
ticipants were instructed that they were free to select either mode
and could switch as many times as they wanted. They were also
informed that there were no benefits or penalties for selecting either
mode. When each run started, no autonomy mode was selected
by default, thereby requiring the participants to make a selection.
The maximum speed at which the robot would move was the same
in both modes (approximately 0.125 meters (0.41 feet) per sec-
ond). These configurations ensured that both autonomy modes were
similar from a performance standpoint.

In fully autonomous mode, the robot ignored the participant’s
input and followed the hard coded path. The obstacle avoidance
algorithm ensured that the robot never hit any object on the course.
In robot assisted mode, the participant had a significant portion of

the control and could easily override the robot’s movements. The
robot would provide its desired velocity vector based on the path it
was supposed to follow. The robot’s desired vectors were calculated
the same way in both autonomy modes and were displayed on the
UI to show the participant the robot’s desired direction.

3.5 Compensation
Using higher levels of automation reduces workload and hence

is desirable, especially under heavy workload from other tasks. To
prevent participants from using high levels of autonomy all the time,
regardless of the autonomous system’s performance, it is typical to
introduce some amount of risk. Hence, in line with similar studies
(e.g., [5, 11, 21]), the compensation was based in part on the overall
performance. The participants at UML could select a gift card to
a local restaurant or Amazon.com, and the participants at CMU
received cash.2 The maximum amount that the participants at both
sites could earn was $30. Base compensation was $10. Another $10
was based on the average performance of 5 runs. The last $10 was
based on the average time needed to compete the 5 runs, provided
that the performance on those runs was high enough.

The performance for each run was based on multiple factors, with
different weights for each of those factors determined before the
experiments were run. The participants were told there was a signif-
icant penalty for passing a box on the incorrect side, regardless of
the autonomy mode. If the participants passed a box on the wrong
side, they were heavily penalized (20 points per box). In addition
to the loss of score, participants were told that time would be added
based on the the number of wrong turns they took, but the specific
penalties were not revealed. For the first box passed on the wrong
side, no additional time was added, to allow people to realize that
the reliability of the system had dropped. For the second incorrect
pass, 60 seconds were added, with an additional 120 seconds for
the third and an additional 240 for the fourth, continuing with an
exponential increase. Finding the victims was also an important
task, so 10 points were lost for each victim missed. Equation 1 was
used to calculate the score for each run.

Score = 100− 20× numIncorrectPasses

− 10× numV ictimsMissed− 5× numPushes

− 2× numBumps− numScrapes− secondaryTaskScore/2
(1)

The scoring formula was not revealed to participants, although
they were told the factors that would influence their score. The score
for each run was bounded between 0 and 100. If the score was 50

2The means of compensation were institutional limitations.
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or more, the participants were eligible for a time bonus; if they had
completed the runs in under 11:45 minutes on average, they would
receive an additional $10. If they had a score of 50 or more and
took between 11:45 and 15 minutes per run on average, they would
receive a $5 bonus. Participants were told about this interdependence
between score and time, which was designed to prevent participants
from quickly running through the course, ignoring the tasks, while
also providing a significant motivation to perform the task quickly.

At the end of each run, its score was calculated and the partici-
pants were informed about the amount of compensation that could
be received based only on that run. At the end of five runs, the
average compensation was calculated and given to the participant.

3.6 Questionnaires
There were three sets of questionnaires. The pre-experiment

questionnaire was administered after the participants signed the
consent form; it was focused on demographics (i.e., age, familiarity
with technology similar to robot user interfaces, tendency towards
risky behavior, etc). The post-run questionnaire was administered
immediately after each run; participants were asked to rate their
performance, the robot’s performance, and the likelihood of not
receiving their milestone payment. Participants were also asked to
fill out previously validated trust surveys in their unaltered form,
referred to in this document as Muir [17] and Jian [9], and a TLX
questionnaire after each run. After the last post-run questionnaire,
the post-experiment questionnaire was administered, which included
questions about wanting to use the robot again and its performance.

3.7 Procedure
After participants signed the informed consent form, they were

provided an overview of the robot system and the task to be per-
formed. Then, participants were asked to drive the robot through the
trial course in fully autonomous mode. The experimenter guided the
participant during this process, by explaining the controls and help-
ing with tasks if necessary. The trial course was half the length of
the test course. Once participants finished, they were asked to drive
the robot again through the same course in robot assisted mode.
Since there are multiple tasks that participants need to perform,
we decided to first show them the fully autonomous mode, as that
would be a less overwhelming experience. Once the participants
finished the second trial run, they were asked to fill out the post-run
questionnaire. While the data from this questionnaire was not used,
it allowed participants to familiarize themselves with it and also
helped to reinforce some of the aspects of the run that they would
need to remember. The participants were also told that they could
take a break whenever they wanted.

After the two trial runs, the participants were asked to drive
the robot for five more runs. In each run, a different map was
used. During these runs the reliability of robot autonomy was either
held high throughout the run or was changed. Figure 3 shows the
four different reliability configurations. The changes in reliability
were triggered when the robot passed specific points in the course.
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Figure 4: Impact of reliability on trust.

These locations were equal in length and there were no overlaps.
For all four patterns, the robot always started with high reliability.
The length of each low reliability span was about one third the
length of the entire course. Using different dynamic patterns for
reliability allowed us to investigate how participants responded to
a drop in reliability at different stages and the changes’ influence
on control allocation. Every participant started with a baseline run
under full reliability (Reliability A in Figure 3). Then, the four
reliability profiles were counterbalanced for the remaining four runs.
Instead of a single long run, we elected to use shorter duration runs
because we wanted to directly compare failures at different periods.
Failure during longer runs can be investigated in the future, once the
important reliability patterns can be identified.

Our goal was to investigate how trust is initially formed; hence we
recruited novice participants. We expect expert users would interact
differently with the system, as they would already have a mental
model of it and its performance.

4. RESULTS AND DISCUSSION
While 12 of the participants were run at CMU and 12 at UML,

there were consistent behaviors across the sites related to reliability
and autonomy switching, so this data is reported in aggregate. There
were some site differences in terms of the trust scales used, which
we discuss below.

Unless noted, data from the practice and baseline runs were not
included in the analyses. We checked for practice effects (run order)
and map effects and did not find any issues. This suggests the
counterbalancing and map designs were adequate.

4.1 Positivity bias
We found that 13 participants started all four runs by switching

into the fully autonomous mode and 17 participants started run 1 in
the fully autonomous mode. Of the 96 total runs, participants ini-
tially opted to start in full autonomy for 65 of them. The breakdown
for the individual runs was: run1 = 17, run2 = 15, run3 = 17, and
run4 = 16, which is remarkably stable. The participants’ willingness
to initially trust the robot indicates the possibility of a positivity bias.
These findings are consistent with the findings of Dzindolet et al. [4]
where they found that given little experience or information about
an automated decision aid, people were willing to trust it.

4.2 Effect of reliability changes on trust
The two trust survey methods (Muir, Jian) were highly correlated

with each other (r = 0.84, p < 0.0001) suggesting either can be used
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for such experiments in the future. In our analysis in later sections,
we have elected to standardize on Muir due to its shorter length.

The Muir and Jian post-run trust surveys were examined with
REML (REstricted or REsidual Maximum Likelihood) [8] on the
effects of Site (CMU, UML), Reliability (A, B, C, D), and Partic-
ipants as a random effect and nested by Site. In both cases, there
were significant differences for Site and Reliability, but not the in-
teraction. UML trust responses were significantly higher than CMU
for Muir, F(3) = 9.7 (p < 0.01), and Jian, F(3) = 9.7 (p < 0.01).
Student’s t post hoc tests of Reliability on Muir, F(3) = 2.6 (p =
0.059), and Jian, F(3) = 3.0 (p < 0.05), showed reliability A as being
significantly higher than C and D for both metrics (Figure 4). These
nearly identical results for Muir and Jian reinforce the earlier finding
that using just one approach is appropriate in the future.

These results mean that trust is highest in high reliability runs
(A); slightly reduced in runs with low reliability at the beginning
of the run and high at the end (B); and more reduced for runs
where reliability was low in the middle or end of the runs (C & D).
This result means timing is important for trust – drops in reliability
after a period of good performance are more harmful than early
failures. Whether this is due to memory recency or a breakage in
the participant’s mental model of robot performance is uncertain.

The influence of Site on trust survey results is likely due to UML’s
population being slightly younger (mean of 7 years younger) and
more predisposed towards risky behavior (0.66 higher on a set of
7-point self-rating scales). Significance tests for both demographic
features were close, but not statistically significantly different. How-
ever, their combined effect may have produced this Site effect.

4.3 Changing autonomy levels
To obtain a high-level view, we performed a REML analysis of

how many times participants switched the autonomy level within a
run on the effects of Site (CMU, UML), Reliability (A, B, C, D),
and Participants as a random effect and nested by Site. This analysis
resulted in a significant difference only for Reliability, F(3) = 4.7 (p
< 0.01), where a Student’s t post hoc revealed participants switched
considerably more within reliability C, as compared to A and D
(Figure 5). Likewise, B was higher than A.

Of the 24 participants, five did not switch autonomy levels during
any of their runs, regardless of the reliability profiles. Two of these
participants stayed in robot assisted mode for all of their runs, two
stayed in the autonomous mode, and one participant used robot
assisted mode for all but one run. Participants were binned into
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Figure 6: Autonomy return by exposure to low reliability. t0
represents the time when reliability drops and t1 represents the
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three behavior groups: FullAuto, Mixed, and MostlyRobotAssisted.
Sample sizes for these groups were imbalanced and too small for
statistical analysis (2, 19, and 3, respectively), but there were several
clear trends. The MostlyRobotAssisted group run times were no-
ticeably slower, and the FullAuto rated their own performance low
in comparison to the other two groups. There was a general trend of
lower trust on the Muir questions as autonomy use increased across
the three groups (see Familiarity bias below).

Of the 19 participants in the Mixed behavior category, nine did
not change their autonomy level during the baseline run, which
was held constant at high reliability (3 in robot assisted mode, 6 in
autonomous). In the second run with high reliability, eleven did not
change their autonomy level (1 in robot assisted, 10 in autonomous).
Seven of these participants overlapped, meaning that during the
high reliability runs, all but six participants did not change their
autonomy mode in at least one of those runs.

In contrast, during the runs with changing reliability, all Mixed
participants switched autonomy modes in at least one of the other
three variable reliability conditions. Also, 14 of the 19 participants
switched autonomy modes in all three of the variable reliability con-
ditions (B, C, & D). This data indicates that participants recognized
they were operating under dynamic reliability and adjusted their
control allocation accordingly. It also indicates that participants
recognized the risk of decreased compensation and tried to optimize
the allocation strategy to obtain maximum compensation. To further
investigate how the participants used autonomy, we analyzed the
participants’ behavior during periods of low reliability.

4.4 Use of autonomy during periods of
unreliability

To examine behavior during low reliability, we focused on the
scenario where participants entered a low reliability window during
autonomy use. This window corresponded to the point at which
reliability decreased (t0) to when it increased (t1). By definition,
runs with reliability A were not included, as reliability did not
decrease during those runs. For the 17 participants who switched
during this window, the mean use of autonomy during low reliability
was 30 percent.

A total of 15 participants switched from autonomy to robot as-
sisted mode after t0 and from robot assisted mode to autonomy after
t1. This behavior was constrained to reliability conditions B and C



Reliability N Rows Rating of Self Performance Rating of Robot Performance (1=Poor; 7=Excellent)Risk Not Receiving Milestone Payment Std Err(Rate Self Performance (1=Poor; 7=Excellent))Std Err(Rate Robot Performance (1=Poor; 7=Excellent))Std Err(Risk Not Receiving MilestonePayment (1=Very low; 10=Very high))
A 24 5.58333333333333 6.291666667 4.375 0.329232015160682 0.164616007580341 0.610335201320565
B 24 4.16666666666667 6.083333333 6 0.344031231028093 0.207789144332459 0.507194614336148
C 24 4.5 6.041666667 6.20833333333333 0.294883912309794 0.212636713623674 0.521213629275938
D 24 4.79166666666667 6.458333333 5.625 0.350874511336053 0.14718575794891 0.560836913441208
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Figure 7: Impact of reliability on self assessment ratings.

(7 and 8 participants respectively); we conjecture that participants
did not have enough time to recover from the reliability drop in
D, where the drop occurred near the end of the run. Within this
group, the mean switching time after the reliability drop at t0 was
16.6 seconds (SD = 13.1). The return to autonomy after reliability
improved at t1 occurred a mean of 39.0 seconds later (SD = 41.0).
A one tailed t-test, t(14) = 2.04 (p < 0.05) confirmed that partici-
pants waited longer to switch back to autonomy than switching away
from autonomy. While only marginally statistically significant (one
tailed, t-Ratio t(13) = 1.73 (p < 0.1), there were strong indications
that participants switched away from autonomy at t0 twice as slowly
for C than B (means 22 and 11 seconds respectively). However,
there were no differences between C and B for switching back to
autonomy at t1.

Of these 15 participants, seven returned to the fully autonomous
mode at t1 for both the B and C conditions. Four of these seven
switched back to autonomy faster on their second exposure to a reli-
ability change, while the rest switched back more slowly (Figure 6).
This results suggests that repeated exposure to changing reliability
impacts the speed at which people switch back to autonomy, al-
though we do not posses enough evidence to determine what causes
this behavior.

4.5 Effect of self-assessment on trust
ANOVA analysis of participant ratings of robot performance

across reliability levels were inconclusive, F(3, 92) = 1.09 (p
= 0.36). However, participants did respond differently for ratings
of their own performance, F(3, 92) = 3.4 (p < 0.05), and were
marginally significant on the risk of not receiving a milestone pay-
ment F(3, 92) = 2.2 (p < 0.1). Student’s t post hoc analyses
showed a higher rating of self performance and better odds of receiv-
ing the milestone payment for reliability A, as compared to C and B,
in both measures (Figure 7). Assessment of self performance was
also sensitive when examining trust, with a significant correlation to
Muir (r = 0.43, p < 0.0001).

As has been seen in some of our prior experiments, participants
were pretty accurate in their assessment of milestone performance.
Ratings of risk of not being paid the extra money were inversely
correlated with actual payment (r = −0.58, p < 0.01).

4.6 Familiarity bias
The protocol was intentionally designed to promote use of au-

Table 1: Backwards stepwise regression results for Muir trust
ratings

Effect Estimate p
Cognitive load (TLX) -0.33 < 0.01
Victims found -1.58 < 0.01
Payment (performance) -0.22 < 0.01
Tendencies towards risky behavior 0.65 < 0.01
Risk of not receiving milestone payment 0.28 < 0.05
Participant age -0.05 < 0.1
Self performance rating 0.50 < 0.1
Robot performance rating removed x
Experience with robot-like UIs removed x
Autonomy switches removed x
Technology demographics removed x
Secondary task performance removed x
Percent autonomy removed x
Map time removed x

tonomy. As expected, higher use of autonomy was correlated with
better performance on finding more victims (r = 0.30, p < 0.01)
and faster route completion time (r = −0.51, p < 0.0001). These
results suggest that general use of autonomy had a perceptible, ben-
eficial impact on the task.

As mentioned, prior work shows that increased use of autonomy
with positive performance outcomes leads to higher trust (e.g., [11]).
However, the Muir post-run trust ratings and the percentage of time
spent in full autonomy were inversely correlated (r = −0.20, p <
0.05). This fact, combined with the results above, suggest that
overall familiarity is less powerful than scenario factors.

4.7 Predicting trust
An important question for human-robot interaction is whether

trust can be predicted. To examine this question, Muir trust rat-
ings were examined in the context of cognitive load (TLX), victims
found, secondary task performance, payment (i.e., overall perfor-
mance), number of switches between autonomy and robot assisted
modes, a collection of demographic features, and the three post-run
assessment ratings. A backwards stepwise regression on these in-
dependent measures accurately predicted Muir ratings (R2 = 0.84).
Significance results showed that higher trust was predicted by low
cognitive load, poor victim performance, lower payment, lower ex-
pected payment, high ratings of self performance, younger age, and
high risk tendencies (Table 1). While these factors strongly predict
trust, it should not preclude other factors from being investigated
in the future. Note that autonomy switching, secondary task perfor-
mance, ratings of robot performance, and percentage of time using
full autonomy do not predict trust. These results suggest that trust is
heavily tied to factors with semantic association to risk and personal
feelings about performance, rather than robot performance. This
result is contrary to what Hancock et al. [7] found. We speculate
that the difference is due to the fact that our methodology involved
controlling a remote robot making it difficult to gauge the robot’s
actual performance, as was the case in the studies examined by
Hancock et al. [7].

5. CONCLUSIONS
Our goal of creating an experience that was challenging, would

force autonomy use, and keep participants focused on performance
clearly succeded. This design increases the realism of the experience
and is analogous to scenarios where robot users will be forced to



use autonomy deliberately, carefully, and with supervision (e.g.,
assistive robotics, bomb disposal).

We hypothesized that people would trust a robot system less
when its reliability in autonomous mode decreased, as evidenced
by switching to a manual mode. Trust was affected by drops in
reliability. We further hypothesized that the timing of the reliabil-
ity decreases would influence trust in the robot’s autonomy. This
hypothesis was true, especially when reliability drops occurred late
(D) or in the middle (C) of runs. Reliability patterns also led to
different mode switching behavior. Reliability drops in the middle
of the run (C) led to sharp increases in the number of mode switches
and switches away from autonomy were twice as slow as those seen
for early drops in reliability (B).

We also wanted to determine how long it would take participants
to switch back to autonomous mode after the robot’s reliability
increased. As is typical with trust, users switched away from auton-
omy during a reliability drop much faster than returning to autonomy
after a reliability increase. However, the reliability pattern did not
impact the speed at which users returned to autonomy when relia-
bility improved. We did see mixed behavior when looking at the
exposure to a reliability drop – about half the users returned to au-
tonomy faster the second time, while the other half were slower. We
are unclear on why this difference exists and the limited sample size
(n=7) prevents any conclusive interpretations.

Team experience suggests that risk is important, which was our
main motivation for the milestone payment and the inclusion of
“victims” in the protocol. A regression analysis of various factors’
influence on trust ratings was, in fact, dominated by features associ-
ated with risk. These were explicit factors (e.g., tendencies towards
risky behavior, payment, risk of not receiving payment) and implicit
(e.g., victims found, participant age). Personal factors associated
with self assessment (TLX, self performance rating) were also im-
portant in the analysis. These risk and personal factors overwhelmed
factors associated with robot performance and robot reliability. In
short, operators tie trust to their own actions rather than robot per-
formance. Other work by the team has revealed similar tendencies
in expert robot operators.
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