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Abstract— Appropriate robot behavior in public, open spaces
cannot occur without the ability to automatically detect conver-
sational groups of free-standing people. To this end, we propose
an alternating optimization procedure that estimates lower
body orientations and detects groups of interacting people.
The first task is achieved by tracking the direction of the
lower body of the people in the scene based on their position,
their head orientation, the location of objects of interest in
their vicinity, and their groups. For the second task, we
propose a new group detection algorithm based on F-formation
detection. This method can reason about lower body orientation
distributions, and generates soft group assignments for the
orientation trackers. We evaluate the proposed approach on a
publicly available dataset, and show that it can improve state-of-
the-art detection of non-interacting people without sacrificing
group detection accuracy. This is particularly useful for robots
since it provides more opportunities for starting interactions
and can help estimate disengagement.

I. INTRODUCTION
We want to improve robot reasoning of human environ-

ments and social behaviors by giving them the ability to
detect conversational groups of free-standing people from
visual data. For example, in Figure 1(a) two people converse
and the robot is not part of the interaction. Thus, it would
be inappropriate for the robot to pass between them or
suddenly approach very closely. Meanwhile, the robot has
the opportunity to interact with the other people in the room.
In Figure 1(b), the robot interacts with four people. If the
robot can detect that one person is leaving the group but
wants to continue engaging this person, then it can resort
to strategies to solicit his or her attention. Thus, detecting
group membership can help robots better conform to social
norms, as well as reason about spatial relationships in public
environments [1], [2]. In addition, detecting these type of
social encounters can enable autonomous attention shifts [3]
and initiate human-robot interactions [4], [5].

Existing algorithms for detecting conversational groups
exploit the fact that the members tend to cooperate to sustain
a shared focus of attention, and maintain a particular spatial-
orientational organization that maximizes their opportunities
to monitor each other’s mutual perceptions [6], [7]. The
methods that reason directly about foci of attention typically
seek to detect the intersection of the lines of sight of the
people in the scene [8]–[10]. While this information can
be used to infer group interactions, inferences are often
affected by shifts in attention, temporary visual distractions
(e.g., when people glance at someone who walks nearby) or
situations in which people do not necessarily converse, but
pay attention to the same event or target. Other methods that
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Fig. 1: We seek to detect free-standing conversational groups
in situations such as (a) and (b). In (a), two people (outlined
in white) sustain a face-to-face arrangement while talking.
In (b), the group interacts with a furniture robot. The
transactional segments are illustrated in blue on the floor.
The o-space is where the transactional segments intersect.

reason about the spatial-orientational organizations of free-
standing group interactions [5], [11]–[15] tend to be more
robust. The reason is that these organizations persist over
time, even when the members of a group change or people
attend to distractions. It is also possible to detect group
interactions using proximity only [16], [17], since people
stand nearby while conversing [18]. However, distance infor-
mation alone can lead to errors in constrained spaces (e.g.,
in crowds). Besides, [19] proposed a data-driven approach
to detect dyadic group interactions. Unfortunately, detecting
bigger groups with this method requires to learn new models.

Kendon [20] described the spatial-orientational organiza-
tions that emerge during free-standing conversations as face-
formation systems, or F-Formations in short. The members
of such systems position and orient themselves such that
they have equal, direct, and exclusive access to the space
between them. In the case of pairs, the individuals typically
sustain face-to-face or side-by-side arrangements during F-
Formations (as in Fig. 1(a)). Bigger groups tend to form
semi-circular, square, or circular arrangements (Fig. 1(b)).

The methods that reason about F-formations to detect con-
versational groups typically model the transactional segment
of each person in the scene and then reason about o-spaces.
The transactional segment of a person is the space that
extends forward from his or her lower body and is used
while engaged in a particular activity [20]. The extent of
this space varies, but is always limited by the orientation of
their lower body, as in Fig. 1. People often look into this
space, and actively maintain it in the presence of intrusions.

Group members tend to orient themselves so their in-
dividual transactional segments intersect, creating a joint
transactional space. This intersection is known as the o-
space of the corresponding F-formation, and is maintained
even when the interactants get distracted briefly and turn



their heads away. When people join an existing group, they
typically position themselves such that their transactional
segments intersect the existing o-space. As in [2]–[5], the
notion of F-formations can be applied to robots as well.

While prior F-formation detection methods were designed
based on the previous concepts, most of them used head
orientations or an estimate of focus of attention to direct
people’s transactional segments [11], [12], [14], [15]. The
reason is twofold: head orientations and focus of attention
approximate lower body orientation, and are easier to es-
timate automatically.1 Unfortunately, this choice makes the
F-formation detection methods prone to the aforementioned
problems, requiring additional effort to handle noise in
the direction of the transactional segments. As a trade-
off, F-formation detection algorithms have to become more
inclusive in order to succeed, resulting in additional false
members in the detected groups (as further discussed in
our evaluation). Alternatively, one might consider relying on
the direction of motion of the individuals in the scene to
model their transactional segments, since this has worked for
tracking moving groups [21]. Nonetheless, this information is
insufficient by itself when people stand still while conversing.

Building from previous work, we propose to detect groups
using an estimate of the (non-observable) lower body orien-
tations of the people in the scene, rather than the head di-
rectly. We exploit the mutual dependency between the group
detection task and the lower body orientation estimation
problem to this end. On one hand, lower body orientations
allow us to estimate F-formation systems and, thus, infer
who is conversing with whom. On the other, o-spaces are
an important prior for inferring lower body orientations. Our
algorithm processes each problem in parallel as part of an
alternating optimization procedure that quickly approximates
the lower body orientation distribution of everybody in the
scene, while estimating their corresponding groups and o-
spaces. This makes our approach easy to implement (without
any additional image processing) and suitable for in situ
human-robot interaction applications, where computational
resources are often limited and on-line inference is preferred.

As part of our contributions, we also provide a new method
for detecting F-formations based on o-spaces. This method
can work with non-parametric orientation distributions and is
able to compute soft group assignment scores for each person
in the scene, rather than the most likely group configuration
only. The latter property is particularly useful for reasoning
about group interactions in confusing situations.

We test our approach on a publicly available dataset
[14], in which six people hold various conversations for
about 30 min. By inferring lower-body orientations in this
scenario, we can better detect when people are not part of a
nearby group conversation in comparison to the state-of-the-
art method of Setti et al. [15]. This can increase the number
of opportunities for a robot to start new interactions with
people, without sacrificing group detection accuracy.

1 In the case of [5], a laser scanner was used to measure users’ upper-
body orientation with respect to a robot and detect triadic F-formations. This
approach required direct view of the upper bodies from the sensor, limiting
generalization to other situations. In [13], body skeletons from multiple
Kinects were used to detect F-formations, but orientation measurements
needed manual correction when frontal and backward skeletons were
mislabeled. This situation could be improved by tracking orientations based
on body measurements and contextual data, as proposed in this work.

II. NOTATION
In this work, we focus on estimating a set of conversational

groups Gt = {(G1, c1), (G2, c2), . . .} at any time t by means
of detecting F-formations. We model each group with a set
G that holds the numeric identifiers of its members and a 2D
vector c = [cx, cy]T with the location of its o-space center
in a world coordinate frame. For example, if the first group
has three members, then G1 = {a, b, c}, where a, b, c ∈ N
are the identifiers of the interactants.

At any time t, we assume that we are given a set Ot =
{o1

t , . . . ,o
O
t } with the 2D location of the objects that people

may engage with in their vicinity (e.g., as taken from a map
of the environment). We are also given the 2D locations
Pt = {p1

t , . . . ,p
P
t } of the people in the scene and their head

orientations Θt = {θ1t , . . . , θPt } (yaw angle) with respect to
the world frame. These values come from an arbitrary person
tracker and, as such, are prone to measurement errors.

We often use von Mises distributions (VM) in this work
for the lower body orientation estimation problem because
they naturally model angular distributions [22]. In particular,
VM(a;µ, κ) = exp (κ cos(a− µ))/2πI0(κ), with I0(·) the
modified Bessel function of order zero. The parameters µ
and κ are analogous to the mean and the inverse of the
variance in the normal distribution. When κ = 0, the von
Mises distribution becomes uniform.

III. DETECTING GROUPS AND TRACKING
LOWER-BODY ORIENTATIONS

Our algorithm GRUPO, for GRoUP detection and
Orientation tracking, alternates between each task (Fig. 2).
The algorithm outputs at each time-step a set of free-standing
conversational groups Gt by detecting F-formations, as well
as lower-body orientation distributions for the people in the
scene. Information about the likely o-space centers is output
by the F-formation detection module and fed into the lower-
body orientation trackers (one for each person) along with
their corresponding positions p, head orientations θ, and
the location of nearby objects of interest. Each tracker then
outputs a lower-body orientation distribution that is used to
guide the group detection process in the next time-step.

Detect People 
(location + velocity +  head orientation)

World Model
(other static foci of attention)

Detect Groups / F-formations
(membership + o-space centers)

Track Lower-Body Orientations
(for each person independently)

Fig. 2: GRUPO alternates between detecting free-standing
conversational groups and tracking lower-body orientations.

GRUPO requires good initialization, as any other local
optimization method. We use head orientations to compute a
first set of groups and likely o-space centers, and then pass
this information to the orientation trackers. The next two
sections detail the main steps of the algorithm.

IV. DETECTING FREE-STANDING
CONVERSATIONAL GROUPS

We propose a new method for detecting F-formations and
their members, inspired by the Hough voting scheme of [12].



The main difference with prior work is that our method
reasons about non-parametric lower body orientation distri-
butions. In other words, our method can cope with situations
of high uncertainty, where the distributions are multi-modal.
In addition, the proposed F-formation detection approach
computes soft o-space assignments in a continuous space.
These are good properties because soft assignments help
lower-body orientation trackers recover from group detection
errors, and operating in a continuous space frees our method
from quantization problems. This makes our method faster
and more accurate than earlier voting approaches, like [12].

Our F-formation detection approach is detailed in Algo-
rithm 1. First, each person i proposes o-space centers (mod-
eled as normal distributions) based on his or her position
pi in the scene and lower-body orientation distribution Φi

(provided as a set of N samples). The proposals compose a
Gaussian mixture whose 2D local maxima M we estimate
using the fixed-point mode-finding algorithm of [23] (lines
9 to 25 of Alg. 1). Considering the modes of the Gaussian
mixture as likely o-space centers, we then compute a set
of scores Si[k] for every person i in the scene. These
scores represent the likelihood that the transactional segment
of this person intersects the o-space center k (line 41).
When it is likely that the transactional segment of a person
intersects at least one o-space center, these scores compose
a discrete probability distribution that represents soft o-
space assignments. Otherwise, all Si[k] = 0 for any person
i by convention. Finally, we group the people for whom
a particular mode has the highest probability and return
these groupings as the detected set of F-formations (with
associated o-space centers).

A. PROPOSED O-SPACE CENTERS

Without loss of generality, consider a person i with
a corresponding lower-body orientation distribution Φi =
[φi[1], . . . , φi[N ]], with each φi[·] ∈ [0, 2π] with respect to
the horizontal axis of the world coordinate frame. We model
the proposed o-space center for a given φi[j], 1 ≤ j ≤ N ,
as a 2D normal distribution N (µij ,Σ

i
j) with:

µij = pi +R

[
stride+ f(abs(d1Tvi))

0

]
(1)

Σij = R

[
σjx 0
0 σjy

]
RT (2)

where, R =

[
cos(φi[j]) − sin(φi[j])
sin(φi[j]) cos(φi[j])

]
d1 =

[
cos(φi[j])
sin(φi[j])

]
The vectors pi and vi are the position and velocity of the
person i with respect to the world coordinate frame, and the
stride parameter represents the likely distance of the o-space
center the lower body when the person is standing still. The
function f : R+ → [0, d] is monotonically increasing, and we
use it to increment the distance between the person and the
proposed o-space center up to an arbitrary maximum value
d ∈ R+, based on the individual’s velocity and the direction
d1 of the lower body. Our rationale for this model is that
people often move forward when approaching an existing
group. When they are already interacting, they sometimes

Algorithm 1: Detect F-formations by mode-finding
Input: Position pi and non-parametric lower-body orientation

distribution Φi =
[
φi[1], . . . , φi[N ]

]
of every person i

in the scene (1 ≤ i ≤ P )
Output: Groups G, list M of possible o-space centers, and

lists Si of o-space scores for every person
1 X = ∅ // set of mixture components
2 w = 1/PN // components’ weight
3 for i = 1 to P do
4 for j = 1 to N do
5 (µi

j ,Σ
i
j) = ospaceProposal(pi, φi[j])

6 X = X ∪ {(µi
j ,Σ

i
j , w)}

7 end
8 end
9 M = [ ] // modes (possible o-spaces)

10 for (µi
j ,Σ

i
j , w

i
j) in X do

// hill climb from the mean [23]
11 x = fixedPointLoop(µi

j ,X )
12 if x is local maxima then
13 (idx, dist) = closestMode(x,M)
14 if dist < τ then // group modes?
15 if p(M[idx];X ) < p(x;X ) then

// x has higher probability
16 M[idx] = x
17 end
18 k = idx
19 else // add new mode
20 add x to M
21 k = |M|
22 end
23 mode idxij = k // bookkeeping
24 end
25 end

// compute soft assignment scores
26 for i = 1 to P do
27 Si = [ ]
28 for k = 1 to |M| do // initialization
29 ni

k = 0
30 add 0 to Si

31 end
32 for j = 1 to N do
33 if isset(mode idxij) then

// reached local maxima
34 k = mode idxij
35 if visible(M[k],pi) then
36 ni

k = ni
k + 1

37 end
38 end
39 end
40 if

∑
k n

i
k > 0 then

41 for k = 1 to |M| do Si[k] = ni
k/
∑

k n
i
k end

42 end
43 end

// greedy hard group assignment
44 G = ∅
45 for k = 1 to |M| do
46 G = ∅
47 for i = 1 to P do

// get the most-likely o-space
48 idx = arg maxm Si[m]
49 if Si[idx] > 0 and k == idx then
50 G = G ∪ {i}
51 end
52 end
53 if |G| ≥ 2 then // found group / F-formation
54 G = G ∪ {(G,M[k])}
55 end
56 end



move sideways or backward to allow other people to join
their F-formation, without altering much their o-space.

In terms of the function f in eq. (1), we use f(x) =
2σ(x) − 1 with σ(x) = 1/(1 + exp(−x)), though other
functions could be used as well. With our choice, the o-space
can move maximum 1m away from a person that is moving
forward or backwards. The o-space moves little when the
person walks sideways, since abs(d1Tvi) approaches zero.

We further control the shape of Σij in eq. (2) with:

σj
x = (stride/s)2 + g(abs(d1Tvi)) and σj

y = λ(stride/s)2

(3)
with s, λ ∈ R+ − {0}, and g another increasing function.
Figure 3 illustrates the flexibility of this model.

λ  = 0.50 λ  = 1.00 λ  = 2.50

λ  = 0.50 λ  = 1.00 λ  = 2.50

λ  = 0.50 λ  = 1.00 λ  = 2.50

Fig. 3: O-space proposals for 5 orientations at 0,±0.25,±0.5
radians from the direction of the lower body. The distribu-
tions were computed with stride = 0.7m, s = 3, g(x) =
f(0.5x) and various λ (eq. (1)-(3)). The velocity was zero
for the first row, it was aligned with the direction of the lower
body in the second, and was perpendicular to it in the third.
The black dots are the means of the Gaussian distributions.
Ellipses represent the covariances at 99% confidence.

B. O-SPACE MIXTURE DISTRIBUTION
O-space proposals are combined into a Gaussian mixture:

p(x) =

P∑
i

N∑
j

1

NP
N (x;µij ,Σ

i
j) (4)

where 1/NP is the weight of the components, and µij and
Σij come from equations (1) and (2), respectively.

We consider as possible o-space centers the modes of
this mixture (Fig. 4). To find the modes, we use the fixed-
point algorithm of [23], starting from the means of the
components. The function fixedPointLoop in line 11 of
Alg. 1 corresponds to the “fixed point iteration loop” of [23]
(see their Fig. 3 for more details). As in the latter work, we
decide in line 12 whether a sample point x reached a local
maxima based on the Hessian of the mixture at that point.
While there can be more modes than mixture components

and it is possible that a more exhaustive search is required
to find them all, sampling from the means provides good
results in practice with a reduced computational load.

(a) Spatial configuration (b) Contour plot

Fig. 4: Left: shows the means of each person’s o-space pro-
posals (small black dots) and groups (by color) based on the
corresponding mode probability. Right: Mixture distribution
of o-space proposals. The modes (in yellow and brown) were
found for τ = 0.75m (line 14 of Alg. 1). Yellow modes were
the most likely o-space for at least one person.

We group the modes that are within τ meters from each
other (line 14 of Alg. 1), and keep track of which component
converged to which mode in the process. When this grouping
happens, we set the mode with highest mixture probability as
the most-likely o-space center in its vicinity. In this manner,
the parameter τ helps coping with noise in human motion,
as well as in our estimates of lower-body orientation.

Once the likely o-space centers are found, we count
for each person how many of their mixture components
converged per center, and compute their o-space scores
by normalizing this count (line 41 of Alg. 1). In order
to ensure that the members of an F-formation have direct
access to the o-space, we do not consider in the count
of each person the o-space centers that are not directly
visible from his or her position. For computing visibility, we
model people as circumferences with fixed radius (0.2m) and
compute occlusions by ray-casting. The resulting soft group
assignment scores are passed to the orientation tracker of the
corresponding person.

To obtain hard group assignments, we proceed in a greedy
fashion and pick the mode with highest score as the most
likely o-space center per person. A group is set to be found
whenever a possible o-space center has the highest score for
two or more people (line 53 of Alg. 1).

V. TRACKING LOWER-BODY ORIENTATIONS
We pose the estimation of lower-body orientation as a

tracking problem, based on the following observations: (1)
people tend to orient their lower body towards other people
or objects of interest while standing still, (2) people often
orient their head in the same direction as their lower body,
(3) people can turn their heads (temporarily) to attend to
visible targets other than their main focus of attention, and
(4) people tend to orient their lower body towards their di-
rection of motion while walking. In general, we assume that
people are standing at all times, as it happens during free-
standing conversations, and that the likely o-space centers
and corresponding assignment scores for each person are
given (e.g., as output by our group detection algorithm).



A. RECURSIVE STATE ESTIMATION

At time t, we estimate (independently) the probability
distribution of each person i’s lower body orientation φit
using the dynamic Bayesian Network of Fig. 5. We assume
that the person’s velocity vi, position pi, head orientation θi,
and contextual information Ci are given for this estimation
process (from time step 1 up to t). The contextual infor-
mation includes the position pj (where j 6= i) of the other
people in the scene, the set O with the locations of the nearby
objects that people my interact with, the o-space centers M
and the assignment scores Si[k], for 1 ≤ k ≤ |M|.

ɸi
t-1 ɸi

t

vi
t-1 vi

t

! it-1 ! itCi
t-1 Ci

t

pi
t-1 pi

t

ɸi
t+1

vi
t+1

! it+1Ci
t+1

pi
t+1

Fig. 5: Bayes network that characterizes the evolution of
hidden lower body orientation φi of a person i, based on
his or her position pi, linear velocity vi, head orientation
measurement θi, and contextual information Ci.

The belief bel(φit) at time t can be formulated recursively:

bel(φt) = p(φt|v1:t, θ1:t, C1:t,p1:t) = (5)

η p(θt|φt, Ct,pt)p(Ct|φt,pt)

∫
p(φt|φt−1,vt)bel(φt−1)dφt−1

where we have dropped momentarily the superscript i
for simplicity. In this factorization, η is a normalization
term, p(θt|φt, Ct,pt) is the head measurement probability,
p(Ct|φt,pt) is the context probability, and p(φt|φt−1, vt) is
the state transition probability.

We use a particle filter to approximate the posterior bel(φt)
with a finite number of samples Φt =

[
φt[1], . . . , φt[N ]

]
,

which we initialize from a uniform VM(0, 0). At any
following time step t, we follow Algorithm 2 to update the
belief. First, we sample new particles given our transition
probability and our previous distribution Φt−1 (line 3 of
Alg. 2). Then, we compute a weight wt, or importance
factor, for each particle based on our context and head
measurement probabilities (line 4). Finally, we draw particles
with replacement based on the weights (lines 7-10). We use
low variance sampling in practice for this last step [24].

Motion Model: For any person i, we propagate his or her
lower-body orientation φi from time t− 1 to t as follows:

φit = φit−1 + ω(vit, φ
i
t−1)∆T + q (6)

The angular velocity function ω(vt, φt−1) in eq. (6) controls
the rate of rotation of the lower body, ∆T is the time
difference from t − 1 to t, and q ∼ N (0, r) is a small
perturbation. The angular velocity function changes based
on the person’s motion and orientation:

ω(vit, φ
i
t−1) = sign(d2Td3)

[ α

∆T

]
m(vit, α) (7)

Algorithm 2: Particle filter for lower-body orientation
Input: Φt−1,vt, Ct, θt
Output: Φt

1 Φ̄t = Φt = [ ]
2 for j = 1 to N do
3 sample φt[j] ∼ p(φt|φt−1[j],vt)
4 wt[j] = p(θt |φt[j], Ct,pt) p(Ct |φt[j],pt)
5 add (φt[j], wt[j]) to Φ̄t

6 end
7 for j = 1 to N do
8 draw k with probability ∝ wt[j]
9 add φt[k] from Φ̄t to Φt

10 end

where,
α = arccos(d1Td3)

d1 = [cos(φit−1) sin(φit−1)]T

d2 = [− sin(φit−1) cos(φit−1)]T

d3 = vit/‖vit‖
m(vit, α) = 2σ(h(α)‖vit‖)− 1 (8)

The variable α is the (unsigned) angular difference between
the previous lower-body orientation φit−1 and the current
direction of motion on the ground plane. The sign(d2Td3)
component of (7) provides the direction of rotation of the
lower body as the person walks. The geometric relations
between d1, d2 and d3 are illustrated in Figure 6.

d1

d3

d2

arccos(         )

vi

d1 d3T

Fig. 6: Geometric relations in our motion model.

The function m(vit, α) in eq. (8) is used to scale the angular
velocity. Our particular choice returns a number in [0, 1)
for non-negative inputs, using the sigmoid function σ(·)
as in eq. (1). The function h(α) in eq. (8) returns a non-
negative scaling constant that further controls the effect of
the magnitude of the linear velocity on ω, based on the
direction of motion. In practice, we use h(α) = aπ−απ + b,
with a > b > 0 small fixed constants. This means that when
the person moves backwards (α→ π), the function h returns
a small value and, thus, m is also small. In this manner, the
motion model favors small changes in body orientation, in
comparison to sudden rotations of 180◦.

Context Model: The probability of the context Cit at time
t given the lower body orientation φit and position pit is a
mixture of three probabilities:

p(Ci
t |φi

t,p
i
t) =

[
wgroup
weng

(1− (wgroup + weng))

]T pgroup(C
i
t |φi

t,p
i
t)

peng(C
i
t |φi

t,p
i
t)

VM(0;φi
t, 0)


where the weights are positive or zero, and sum to one.
The component pgroup(Cit |φit,pit) is the probability of the
o-space assignment given the person’s spatial configuration,
peng(Cit |φit,pit) is the probability of engagement with another
person or object, and VM(0;φit, 0) is a uniform distribution
that represents our failure to explain the context.



The probability pgroup(Cit |φit,pit) is another mixture based on
the o-space centers Mt and the scores Sit :

pgroup(C
i
t |φi

t,p
i
t) =

|Mt|∑
k=1

Si
t [k]VM(βk;φi

t, κgroup) + (9)

(
1−

|M|∑
k=1

Si
t [k]
)
VM(0;φi

t, 0)

where βk is the angle of the unitary vector (M[k] −
pit)/‖M[k]−pit‖, and κgroup > 0 is a parameter that controls
the spread of the von Mises distributions. The last term of eq.
(9) is very important in two cases: when M is empty; and
when the person’s transactional segment is not intersecting
any known o-space center (the values of Sit are all zero).
We model peng(Cit |φit,pit) similarly:

peng(Cit |φit,pit) =

V∑
v=1

ev VM(βv;φ
i
t, κeng) (10)

where βv is the direction from person i to the other people
and objects of interest that are directly visible within a field
of view of 180◦. The weights ev in (10) satisfy

∑V
v=1 ev = 1,

and we use them to bias peng(ct|φt) based on Hall’s spatial
zones [18]:

ev = dist weight(dv)/

V∑
q=1

dist weight(dq) (11)

where with dv the distance (in meters) to the person or object
v in Cit . The function dist weight(dv) returns 0.6 if the
distance is in the personal or intimate spaces (dv <= 1.2),
0.3 if the distance is in the social space (1.2 < dv <= 3.6),
0.1 if the distance is in the public space (3.6 < dv < 7.6),
and 0 otherwise. In the exceptional case that Cit contains no
visible person or object of interest within the upper range of
the public space, we evaluate peng(Cit |φit,pit) with a uniform
distribution (as we do for pgroup when M is empty).

Head Measurement Model: The probability is given by:

p(θit|φi
t, C

i
t ,p

i
t) =wfront pfront(θ

i
t|φi

t) + wfocus pfocus(θ
i
t|φi

t, C
i
t ,p

i
t)

+ (1− wfront − wfocus)VM(θt; 0, 0)

where the weights normalize the mixture once again. The
first component pfront accounts for frontal headings, the
second describes the head orientation based on possible
foci of attention (or distractions), and the third accounts for
unexplained head orientation measurements. In particular,

pfront(θ
i
t|φit) = VM(θit;φ

i
t, κfront)

with κfront the spread of the distribution. The probability

pfocus(θ
i
t|φit, Cit ,pit) ∝ max

v=1...V

{
VM(θit;βv, κfocus)

}
is proportional to the maximum likelihood of orienting the
head towards a (non-occluded) person, object of interest, or
most likely o-space center within a 180◦ field of view in
front of person i. We set pfocus to VM(θit; 0, 0) if no focus
of attention is visible.

Note that people may interact with other social entities that
can be added to this model, such as other robots. It is also
possible to incorporate information about how certain we are
about the location of these targets through the κ parameters,
though we use constant values in this work.

VI. EVALUATION
We compare the performance of the proposed algorithms

against the state-of-the-art approach of [15]. We used their
implementation2 to generate the results in this paper.
Dataset: We used the Cocktail Party dataset of [14] for
our evaluation. This dataset consists of a sequence of more
than 24000 images (recorded at 15Hz) that show six people
interact in an instrumented room. Besides the images, the
dataset provides the location of each person and their head
orientation as computed by a custom person tracker, as well
as ground truth group annotations for 320 frames (roughly
every 5 seconds).
We collected annotations for the lower body orientation of
the people in the scene to complement the dataset. The
annotations were made on the 320 images that had group
annotations, using an interface similar to the one that was
used in [25] to collect body orientations.3

Group detection criteria: We adopt the two criteria of [12],
[14], [15] for analyzing group detection results versus the
ground truth annotations. In one case, we consider a group
to be detected if at least d(2/3)|G|e of its members are
identified and no more than 1−d(2/3)|G|e of false subjects
are found, where |G| is the cardinality of the group. In a
harder case, we consider a group to be detected if all its
members are identified and no false members are found.
Precision, recall and F1 scores are computed using this
criteria, summing true positives, false positives, and false
negatives over all the frames with group annotations.

Parameterization: As in prior work, we used stride =
0.7m for our group detection algorithm and the one from
[15]. We considered a table that was in the scene of the
cocktail party as an object that people could interact with
(modeled by two landmarks). In the case of Alg. 1, we also
used λ = 0.25 and g(x) = f(0.5x) in eq. (3), which we
found to work well in practice.
We ran the particle filters for GRUPO with N = 80 samples,
and set the variance r = 0.2, and the parameters a = 0.64
and b = 0.16 for sampling the motion model. The weights
of the context and head measurement probabilities were
wgroup = 0.55, weng = 0.35, wfront = 0.2 and wfocus = 0.75,
respectively. Finally, κgroup = 2, κeng = 4, κfront = 3 and
κfocus = 5, which provided good results experimentally.
To generate results for the proposed group detection method
(Alg. 1) using head measurements and lower body anno-
tations, we generated a (non-parametric) distribution Φ of
lower body orientations by sampling N (φ, q), with φ the
head or body angle and q a small variance. With this
approach, N = 30 samples sufficed to obtain good results,
with q = 0.07 and q = 0.13 for the lower body orienta-
tions and head measurements, respectively. As expected, a
higher variance worked better for the head measurements in
comparison to the lower body orientations.

A. DETECTING GROUPS WITH GRAPH CUTS [15]
We first analyzed the effect of the maximum description

length (MDL) parameter on the performance of [15]. We ran

2http://profs.sci.univr.it/˜cristanm/ssp/
3The annotations can be downloaded from http://cs.cmu.edu/

˜marynelv/cocktailparty_lborient.txt.

http://profs.sci.univr.it/~cristanm/ssp/
http://cs.cmu.edu/~marynelv/cocktailparty_lborient.txt
http://cs.cmu.edu/~marynelv/cocktailparty_lborient.txt


this group detection method using head measurements, lower
body annotations and the estimated lower body direction with
GRUPO. For the latter case, we replaced Alg. 1 in GRUPO
with [15]. The soft o-space scores used by our particle filters
were set to binary {0, 1} values depending on the detected
groups (since [15] only provides hard group assignments).

Figure 7a shows F1 scores. The higher the MDL param-
eter, the more penalty is given to the number of detected
groups (see eq. (5) in [15]). There is not a unique MDL
parameter that works best for all input orientations. In fact,
the more noise, the higher the MDL should be. But there is a
trade-off: the higher MDL, the more inclusive the algorithm
becomes, grouping people together more often than not.

Table I shows the best results obtained with [15]. Using
lower body annotations results in better performance, fol-
lowed by using the head directly and GRUPO’s estimate.
Our intuition as to why GRUPO does not improve the
results is that [15] only computes the most likely group
assignment, and often includes false members in the detected
groups when the input orientations are noisy. Each of these
properties can lead to errors that propagate within GRUPO.

TABLE I: Best group detection results using [15]. “LB Ann”
is lower body annotations. Results for GRUPO were averaged
over 5 runs (std. errors were equal to or less than 0.005).

Criteria Orientation MDL Precision Recall F1

d(2/3)|G|e
LB Ann 14000 0.84 0.84 0.84

Head 30000 0.82 0.81 0.82
GRUPO 14000 0.82 0.80 0.81

|G|
LB Ann 14000 0.69 0.68 0.69

Head 30000 0.62 0.61 0.61
GRUPO 14000 0.61 0.60 0.61

B. DETECTING GROUPS WITH ALGORITHM 1
We then evaluated the performance of the proposed group

detection method (Alg. 1). Figure 7b shows typical F1 scores
when the parameter s varies, which we use to control σx in
equation (3). The smaller s, the more spread the o-space
proposal distributions along the direction of the body. In
terms of F1 scores, Algorithm 1 is as powerful as the graph
cuts approach of [15] when lower body annotations are used
for orienting the transactional segments. The results for the
head are slightly lower in this case, but GRUPO tends to
perform better under the full group detection criteria. Table
II provides the precision, recall and F1 scores for the best
parameter s in each case. Figure 8 shows illustrative results.

TABLE II: Best group detection results using Alg. 1. “LB
Ann” is lower body annotations. Results were averaged over
5 runs (std. errors were equal to or less than 0.003).

Criteria Orientation s Param Precision Recall F1

d(2/3)|G|e
LB Ann 2 0.86 0.83 0.85

Head 1.25 0.81 0.80 0.81
GRUPO 2 0.82 0.80 0.81

|G|
LB Ann 2 0.71 0.69 0.70

Head 1.25 0.60 0.59 0.60
GRUPO 2 0.65 0.63 0.64

Gound Truth Head Measurements GRUPO Orientations

Fr
am

e 
91

75
Fr

am
e 

11
49

8
Fr

am
e 

14
49

5

Fig. 8: Qualitative results for GRUPO on the Cocktail Party
dataset. The first column shows ground truth groups (by
color) and lower body orientations. The second one shows
group detections using the head (s = 1.25 in eq. (3)). The
third uses estimated lower body orientations (s = 2).

C. ORIENTATION ESTIMATION
Figure 9 shows a histogram of the absolute angular

difference between lower body orientation annotations and
head measurements, and between the annotations and the
estimated lower body directions on a typical run of GRUPO.
We used Alg. 1 and s = 2 (as in Tab. II) to compute
these results. On average, the head measurements were 0.59
radians (∼ 34◦) off from the body annotations (SE=0.013).
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Fig. 7: Left: Group detection results for [15], using various maximum description length (MDL) parameters. Right: Results
for the proposed group detection method, for various values of s (eq. (3)). Continuous lines correspond to detecting at least
d(2/3)|G|e group members; dashed lines are for detecting all members (and no more).



Using GRUPO, the estimated lower body orientations were
0.38 radians (∼ 22◦) on average from the annotations
(SE=0.008). GRUPO tends to better approximate real lower
body orientations than raw head orientation measurements.
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Fig. 9: Superimposed histograms of the absolute angular
difference from the head and GRUPO’s orientation to the
lower body annotations. Bins have a width of 5◦.

D. INDIVIDUAL INTERACTION DETECTION
Finally, we looked at how well [15] could infer if people

were interacting or not versus GRUPO. Table III shows the
results from this binary classification task, where accuracy
is (TP + TN)/(TP + FP + TN + FN) and the true
negative rate is TN/(TN + FP ), with TP the number of
true positives, TN the true negatives, FP the false positives,
and FN the false negatives. While GRUPO and the method
of [15] have similar accuracy at the individual level, GRUPO
is able to double the true negative rate of [15], without any
additional computer vision processing.

TABLE III: Individual interaction classification results. We
used MDL= 30000 for [15], and s = 2 (eq. (3)) for GRUPO.
The latter results were averaged over 5 runs.

Metric GC (Head) [15] GRUPO
True Positives 1739 1707.4 (SE = 2.0)
False Positives 140 97.4 (SE = 1.1)
True Negatives 39 81.6 (SE = 1.1)
False Negatives 2 33.6 (SE = 2.0)

Accuracy 0.93 0.93 (SE < 0.01)
True Neg. Rate 0.22 0.46 (SE < 0.01)

VII. CONCLUSIONS
The proposed method detects conversational groups by

recognizing F-formations and tracking lower body orien-
tations. The latter is advantageous for improving how the
transactional segments are modeled, even if body orientations
are not directly observed. Our results suggest that this ap-
proach can help better detect non-interacting people, without
sacrificing group detection performance. We expect this
method to produce better engagement estimates by robots
and more opportunities for them to start social interactions.

There are additional opportunities to improve GRUPO by
providing it additional information, such as direct measure-
ments of lower body orientations. In this case, we foresee
the particle filters reasoning about head and body orientations
jointly, as in [26]. Furthermore, temporal constraints could be
added to the F-formation detections, and GRUPO could es-
timate groups and track orientations at different frequencies.
This would help deal with reduced computational resources.

We plan on testing GRUPO on a more complex dataset
[27] and will pursue additional algorithm enhancements in
the future. We believe that integrating lower-body orientation

tracking and group detection will lead to improved robot
autonomy and more appropriate social behavior.

ACKNOWLEDGMENTS
We thank The Walt Disney Corporation for their support

of this research effort. We also thank O. Lanz for the Cocktail
Party dataset, M. Cristani for their group detection code [15],
and E. J. Carter for her assistance on this project.

REFERENCES

[1] P. Marshall, Y. Rogers, and N. Pantidi, “Using F-formations to Analyse
Spatial Patterns of Interaction in Physical Environments,” in Proc.
CSCW, 2011.

[2] H. Huettenrauch, K. Severinson Eklundh, A. Green, and E. Topp,
“Investigating spatial relationships in human-robot interaction,” in
Proc. IROS, 2006.

[3] H. Kuzuoka, Y. Suzuki, J. Yamashita, and K. Yamazaki, “Reconfig-
uring Spatial Formation Arrangement by Robot Body Orientation,” in
Proc. HRI, 2010.

[4] C. Shi, M. Shimada, T. Kanda, H. Ishiguro, and N. Hagita, “Spatial
formation model for initiating conversation,” in Proc. RSS, 2011.

[5] M. A. Yousuf, “Mobile Museum Guide Robots Able to Create Spa-
tial Formations with Multiple Visitors,” Ph.D. dissertation, Saitama
University, Saitama, Japan, 9 2013.

[6] E. Goffman, Behavior in public places: Notes on the social organiza-
tion of gatherings. Free Press of Glencoe, 1963.

[7] E. Goffman, P. Drew, and A. Wootton, Erving Goffman: Exploring the
Interaction Order. Polity Press, 1988.

[8] A. Fathi, J. Hodgins, and J. Rehg, “Social interactions: A first-person
perspective,” in Proc. CVPR, 2012.

[9] H. S. Park, E. Jain, and Y. Sheikh, “3D Social Saliency from Head-
Mounted Cameras,” in Proc. NIPS, 2012.

[10] L. Bazzani, M. Cristani, D. Tosato, M. Farenzena, G. Paggetti,
G. Menegaz, and V. Murino, “Social Interactions by Visual Focus
of Attention in a Three-Dimensional Environment,” Expert Systems,
vol. 30, no. 2, pp. 115–127, 2013.
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