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An Assisted Photography Framework to Help Visually Impaired Users
Properly Aim a Camera

MARYNEL VÁZQUEZ and AARON STEINFELD, Carnegie Mellon University

We propose an assisted photography framework to help visually impaired users properly aim a camera and
evaluate our implementation in the context of documenting public transportation accessibility. Our frame-
work integrates user interaction during the image capturing process to help users take better pictures in real
time. We use an image composition model to evaluate picture quality and suggest providing audiovisual feed-
back to improve users’ aiming position. With our particular framework implementation, blind participants
were able to take pictures of similar quality to those taken by low vision participants without assistance.
Likewise, our system helped low vision participants take pictures as good as those taken by fully sighted
users. Our results also show a positive trend in favor of spoken directions to assist visually impaired users
in comparison to tone and silent feedback. Positive usefulness ratings provided by full vision users further
suggest that assisted photography has universal appeal.
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1. INTRODUCTION

Many people in the visually impaired community want to photograph people, events
and, objects, just like fully sighted users [Jayant et al. 2011]. Some would also like to use
cameras to obtain visual information, like the denomination of currency [Liu 2008] or
whether their clothes match [Burton et al. 2012]. However, these users generally have
difficulty properly aiming a camera, as does anyone lacking the visual reference pro-
vided by a viewfinder. This problem translates to an increased likelihood for capturing
pictures with undesirable compositions—in other words, blind users might easily crop
faces in a photograph by accident. These compositions reduce the value of the pictures
and, ultimately, may impede understanding of the photographer’s intent and message.

We address this need for assisted photography in the visually impaired community
with an emphasis on camera aiming and show that such assistance can be beneficial
in the context of documenting accessibility barriers related to public transportation.
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Fig. 1. An illustrative description of our implementation. (a) The location of the 3D target captured by
the user. The location of the target in the camera image depends on the relative position of the phone in
space. (b) Real-time audio feedback provided by the system to help improve camera aiming. Visual feedback
is provided with respect to the center of the image (cross mark).

Our general assumption is that users can spatially localize what they wish to capture
and roughly aim the camera in the proper direction. As a result, the initial view of
a scene provided by the user is very informative, and small camera motions suffice
for obtaining a good image composition. Ways of relaxing this assumption are further
discussed in Section 3.1.

The main differences between the assisted photography framework presented in this
work and the way conventional cameras work are as follows:

(1) We evaluate image quality based on a real-time image composition model while
users take pictures.

(2) We try to steer users to orient the camera in such a way that improves image
composition.

(3) We automatically select the final picture taken by users.

A composition model is a set of guides or principles that aid in the placement of
visual elements within the image. This model is the key in our formulation because it
allows for objective image quality evaluation. Although constraining users to a com-
position model may appear to limit creative potential, many photographers use com-
position rules in practice. These rules can be computationally modeled [Datta et al.
2006; Banerjee and Evans 2007; Sung et al. 2012] and therefore incorporated into our
methodology.

We evaluated our implementation of the proposed framework with a camera phone
application, as in Figure 1. We designed the system in the context of documenting
accessibility barriers related to public transportation and chose a centering image
composition model for this purpose because it naturally highlights evidence. We focused
our efforts on the documentation scenario because pictures are an attractive reporting
method for riders [Steinfeld et al. 2010a], and they serve as persuasive evidence for
promoting changes in transit accessibility [Steinfeld et al. 2010b]. Besides supporting
assisted photography, it is our hope that our approach will enable visually impaired
riders to document accessibility barriers through pictures, which in turn can lead to
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better communication with the transit authorities. A different computational model,
such as the rule of thirds, could be used if a more artistic photograph were desired.1

The present article expands our previous work [Vázquez and Steinfeld 2011a, 2011b,
2012] as follows:

—The proposed assisted photography framework is introduced as a guideline for rea-
soning about real-time systems that help users aim a camera. We illustrate how
existing photography systems, or parts of them, fit into our general model.

—New results from our experiment are presented in the context of documenting transit
accessibility barriers using our implementation of the proposed framework.

—Recommendations for future system developers are provided, based on the lessons
learned from our experience.

An important novel aspect of our empirical evaluation is considering fully blind, low-
vision, and fully sighted users from a universal design perspective. Section 5 analyzes
pictures taken with and without assistance by these users, both from an objective
perspective and a subjective point of view. We address questions such as follows: Is the
desired target of the image in the composition? Can third-party observers identify this
target as the main subject of the composition? Although our system implementation
leverages contextual information from the transit domain, the lessons learned from
this experience are applicable to other assisted photography methods.

2. RELATED WORK

The following subsections provide an overview of work related to helping users aim
a camera, as well as reference relevant computer vision approaches pertaining image
composition evaluation and region of interest (ROI) selection.

2.1. Helping Users Aim a Camera

The process of pointing the camera in the right direction was described as focalization
in Jayant [2010]. This process generally relies on transforming visual information seen
from the camera into another useful representation, which can be done with the help
of humans or completely automatically.

Human-driven approaches to help aim the camera rely on human knowledge rather
than computational analyses of the image content. The tele-assistance system for shop-
ping by Kutiyanawala et al. [2011] is an example. This system was designed to establish
verbal communication between a sighted guide and a visually impaired user who car-
ries the camera. The user transmits images of a shelf in a store to the remote sighted
guide, who uses this data to help pick out target products. The guide assists in aligning
the camera toward targets and reads nutritional facts from the image to the user.

To the best of our knowledge, VizWiz was the first crowd-based assisted photography
system for blind people [Bigham et al. 2010a]. The system was designed to answer
visual questions about pictures using Amazon’s Mechanical Turk, such as “Do you see
the picnic tables across the parking lot?” Questions were answered in about 30 seconds,
with warnings on dark and blurry images. Mitigating poor images was important since
they reduced the number of good answers provided by Mechanical Turk workers.

VizWiz::LocateIt, a subsystem of VizWiz, was designed to help blind people locate
arbitrary items in their environment [Bigham et al. 2010b]. This human-assisted sub-
system provided audible feedback to users about how much they needed to turn the

1According to the centering rule, the main elements of the composition should be placed in the middle of the
photo. In contrast, the rule of thirds suggests to divide the picture into nine equal parts by two horizontal
and two vertical lines. The main elements of the composition should then be placed along these lines or their
intersections [Bohn 2006].
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camera toward a target object. Feedback modes included tone and clicking sounds, as
well as a voice that announced a number between one and four indicating how far
from the target the camera was aimed. For the evaluation, researchers acted as con-
federates and responded within about 10 seconds. Participants liked the clicking sound
when finding a cereal box, and some suggested vibration, verbal instructions, and other
familiar sounds as alternatives. No detailed comparison on the perception of feedback
modes was provided.

Computer vision enables automated approaches for helping to aim cameras, thereby
mitigating issues with human assistance latency and availability. Different to our
assisted photography application, most of these computational approaches use face
detectors or reference images to identify an object’s position within a picture. For
example, Bae et al. [2010] helped users aim a camera to match an existing photograph
from the same view point, simplifying the task of rephotography. The system operated
in real time, on a computer connected to a camera, using an initial reference image for
input. This image was used to compute a relative viewpoint difference with respect to
the current view of the camera. Users were informed of this difference through arrows
displayed on the computer screen.

Headshot [Schwarz 2011] is a Windows Phone 7 application designed to help sighted
users take a picture of their face with the back camera of the phone. Since the screen
and camera are on opposite sides of the phone, fully sighted users cannot obtain a
visual representation of the camera image. Thus, sighted users are similar to people
with visually impairments when using the application. Headshot detects the face of the
user and provides audio feedback toward a manually predefined location in the image.
On reaching good positioning, the system provides a spoken warning (“say cheese”) and
then takes a picture.

The EasySnap framing application [White et al. 2010; Jayant et al. 2011] also used
image processing to help visually impaired users aim a camera phone. In one mode,
it detected faces and announced their size and position within the screen. In a second
mode, it described how much and which part of the current view of the camera was
occupied by an initial, close-up view of an object. In a third mode, it detected the contour
of a document and tried to steer users’ aiming position toward centering this document
within the picture. Results from a study about the effectiveness of EasySnap to help
visually impaired users in the first and second case revealed that most participants
thought that the system helped their photography and found it easy to use. Third-party
observers agreed that 58.5% of the pictures taken with EasySnap feedback were better
framed than those without. Neutral ratings in both conditions were obtained in 12% of
pictures, and the remaining 29.5% were better without feedback. As far as we know, no
experimental results to date have been provided on the Document mode of EasySnap.

The PortraitFramer application by the same authors [Jayant et al. 2011] informed
users on how many faces were within the camera image. Visually impaired users could
explore the touchscreen panel of the phone to feel the position of faces through vibration
and pitch cues. This information could then be used to position people in photographs
as desired.

Apple’s camera application for the iPhone works in a similar manner to Portrait-
Framer. The release of the iOS5 mobile operating system updated the camera ap-
plication with face recognition capabilities natively integrated with Apple’s built-in
VoiceOver speech-access technology. The camera application announces the number of
faces in the current view of the camera, as well as a simple descriptor of face posi-
tion and size for some scenarios. Common phrases that the system speaks include “no
faces,” “one face,” “small face,” and “face centered.” Moreover, the system plays a failure
tone when users touch the screen outside of a region containing a face, thus providing
a physical reference on how well a face is centered.
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Other automated, camera-based applications for visually impaired users also try to
provide cues with respect to camera aiming. For example, Liu’s currency reader [Liu
2008] does not actively encourage a particular camera motion but does provide real-
time response on whether a bill is readable within the image. This binary feedback is
useful for identifying and learning good aiming positions.

The mobile application by Tekin and Coughlan [2010] tries to automatically direct
users toward centering product barcodes in images. Users hold the camera about 10
to 15 cm from a product and then slowly scan likely barcode locations. The system is
silent until it finds sufficient evidence for a barcode and then provides audio feedback
for centering this element in the picture. Guidance is provided through four distinct
tone or verbal sounds that indicate left, right, up, or down camera motions. Initial
results published by the authors do not provide insight on particular audio feedback
preferences.

Work on camera-based navigation for blind and low vision users is also relevant
when studying camera aiming. The indoor navigation system by Hub et al. [2004]
answers inquiries concerning object features in front of the camera. The authors use
a text-to-speech engine to identify objects and provide additional spatial information.
The system by Deville et al. [2008] also guides the focus of attention of blind people as
they navigate. Rather than speech, these authors use spatial sounds generated from
color features to indicate noteworthy parts of the scene.

2.2. Image Composition Evaluation

Image composition models have been traditionally studied in the context of aesthetic
photography. Many books (e.g., David Präkel [2006] and Bohn [2006]) describe com-
position principles to help amateur photographers capture the world as professionals.
Some of these principles have been applied to 3D rendering applications [Gooch et al.
2001] or have been modeled computationally to automate image composition evalu-
ation. For example, Banerjee and Evans [2007] seek to automate the composition of
images with one main subject, based on its position according to the rule of thirds and
how prominent it is in the picture. Datta et al. [2006] consider visual features such as
the location of the main element of the image, the distribution of brightness, texture,
and others to automatically infer the aesthetic quality of photos. Recently, Sung et al.
[2012] proposed an interactive optimization method for photo composition on a mobile
platform. The latter system uses several composition rules to evaluate image aesthetics
based on the main subject, which is manually indicated by users. This system is proof
that a variety of image composition models can be evaluated in real time, besides the
one considered in our own implementation.

Autonomous camera control systems are popular in robotics, where motion com-
mands are less noisy than human actions and human interaction may be infrequent or
hard to obtain in real time. Similar to our assisted photography approach, these sys-
tems work under a particular image composition model. Dixon et al. [2003] and Kim
et al. [2010], for example, describe implementations of robot photographers designed
to capture pictures of people, with framing strategies similar to those described previ-
ously. Likewise, Desnoyer and Wettergreen [2010] worked toward aesthetically aware
autonomous agents.

2.3. Region of Interest

The image composition model that we implemented for our study relies on visual
saliency for estimating which part of an image is relevant for the documentation task.
Regions that are visually salient tend to be considered as information carriers that
deliver the photographer’s intention and capture part of the observers’ attention as a
whole [Chen et al. 2002].
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Fig. 2. Assisted photography framework.

Luo et al. [2003] posit that a good composition is the most influential attribute for
image emphasis selection. Their system evaluated composition using saliency maps
and then used this information to estimate the image of an event that received the
most attention.

In our documentation domain, we focus on stimulus-driven visual attention for find-
ing the regions of interest in street pictures, since transit elements tend to be salient
and of high contrast. The number, type, and combination strategy of features used for
estimating saliency in images is a problem of its own [Frintrop et al. 2010]. Different
situations call for different solutions, and so we chose to test several methods with a
variety of street photographs [Walther and Koch 2006; Hou and Zhang 2007; Guo et al.
2008; Bian and Zhang 2008; Achanta et al. 2009]. Interested readers should refer to
our previous work for more details [Vázquez and Steinfeld 2011a].

3. ASSISTED PHOTOGRAPHY FRAMEWORK

This section describes our proposed assisted photography framework, characterized by
the integration of real-time user interaction during the image capturing process. This
framework was designed to help visually impaired users improve the way in which
they aim the camera and thus the composition of the images taken. In keeping with
the spirit of universal design, we believe that such a system is also useful to fully
sighted users.

The framework is composed of three sequential components, as depicted in Figure 2.
The first component prepares the system while the user initially aims the camera. The
second component provides real-time user feedback to refine the position of the camera
and improve image quality. Finally, the third component optionally postprocesses the
final best image that was captured throughout the whole interaction and displays it to
the user.

3.1. Manual Camera Aiming

The first component of the framework observes while the user aims the camera as best
as possible and waits until he or she signals readiness to take a picture. The signal can
be input through typical gestures, such as a tap gesture on the view finder or screen
of a camera phone. A tap is advantageous because it does not require precise input
from the user, although a shutter button could similarly be used in a more traditional
camera system.

In general, we require users to be able to localize the desired target in space and
roughly aim the camera in its direction before advancing to the interactive aiming
phase. This means that the initial view of the scene is very informative about what
the photographer is trying to capture, and small camera motions will be adequate to
improve photo composition.

The preceding requirement is very important from a computational perspective,
because it saves us from reasoning about what is left out of the initial view of the
scene. Likewise, it may allow us to avoid the complexity of specifically identifying the
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target being photographed and rather focus on roughly estimating its location in the
image, as explained in Section 4. The fact that small camera motions suffice to improve
image composition is also important for user adoption, since users should be able to
take a picture with a small amount of effort and in a short period of time.

If we constraint the target being photographed to object classes that can be quickly
and reliably identified with current computer vision techniques, then it is possible to
relax the preceding requirement. For example, if the assisted photography system is
meant to help users take pictures of other people, then it could focus on detecting faces
[Viola and Jones 2001] from the time the user roughly aims the camera in the direction
that he or she thinks is best. If the system effectively detects a face in the current
view of the camera, then it can use this information to suggest how to better frame the
person in the picture. Otherwise, it can inform the user that a person was not found in
the image and wait for a face to appear or stop further processing.

3.2. Interactive Aiming

The interactive aiming component of the proposed framework iteratively estimates
whether the view of the scene can be improved based on an image composition model.
This component steers the user toward better aiming positions and saves the best
image captured during this process. The interactive aiming phase automatically stops
whenever the current view of the scene is good enough, based on the composition model.
Alternatively, this phase ends either when the user has consumed too much time trying
to improve camera aiming or image quality estimation fails. The latter may happen
when image quality depends on the position of the target in the image, such as when
using a centering model, but the system cannot estimate the target’s location.

A computational model of image composition is the key for objectively estimating
image quality and providing user feedback. The particular choice of composition model
and the features considered for its evaluation depend on the type of pictures that we
expect users to take. For example, we chose a centering model for the documentation
task described in Section 4 because it naturally highlights evidence and increases
the chance of including relevant context in images. Nonetheless, a rule of thirds model
may be more appropriate for cases in which we want to help users capture aesthetically
appealing images [Präkel 2006; Bohn 2006] or a model that considers target size if we
are photographing faces of people [Jayant et al. 2011].

User feedback can be provided through a variety of output modes during the inter-
active aiming phase, including audio feedback. The latter is particularly attractive for
advising changes in camera aiming position because the stimuli can be very expressive
and quick to process. From a universal design perspective, we also suggest displaying
the current view of the scene to the user and render visual cues to help aim the camera.
Figure 1 shows an example.

It is also possible to use vibrations and respond to tactile user input during the
interactive aiming phase. This interaction would be similar to how PortraitFramer
[Jayant et al. 2011] or the iOS5 camera application inform about faces. However, we fear
that vibrations might deviate users’ aiming position due to the added device motion.
Requiring tactile user input might also be complicated and prohibitively difficult, since
users would need to hold the camera steady with one hand and explore the tactile
display with the other. Users who need to use a white cane or a guide dog tend to not
have the freedom to use two hands when interacting with a camera.

3.3. Final Image Display

The last component of the proposed framework optionally postprocesses the best image
captured during the interactive aiming phase and displays it to the user. Image post-
processing can be performed to check image quality and, for example, alert the user
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Table I. Comparison of Several Interactive Photography Applications Based on the Components of the Proposed
Assisted Photography Framework

PF iOS5 ES-P ES-O ES-D HS Ours
Designed for visually impaired users � � � � � — �
Manual aiming
Waits for user input to start processing the
view from the camera

� — — � — � �

Interactive aiming
Continuously estimates the location of the
expected target on the image

� � � � � � �

Continuously informs the user about the
location and/or size of the target

� � � � — — —

Automatically evaluates image quality based
on a composition model

— — — — � � �

Informs the user about how to improve
camera aiming

? — — — � � �

Automatically selects the best image and
stops the capturing process

— — — — ? � �

May select a picture, other than the last one
captured, as the best image

— — — — — — �

Final image display
Alerts users if the final image has poor
quality

? — � � � — —

Automatically enhances the final image — — — — — — �
Note: “PF” stands for PortraitFramer [Jayant et al. 2011]. “iOS5” refers to the iOS5 camera application.
“ES-P” and “ES-O” stand for EasySnap in People and Object mode [Jayant et al. 2011], whereas “ES-D”
stands for EasySnap in Document mode [White et al. 2010]. “HS” is Headshot [Julia Schwarz 2011]. “Ours”
is our assisted photography application. A question mark (?) in a cell indicates that the authors do not specify
the presence or absence of the corresponding feature, although the system may have it.

if the image does not have proper exposure or sharpness levels [Jayant et al. 2011].
Postprocessing operations can also be carried to enhance the final image. For example,
in our implementation, we adjusted for camera rotation. One could also opt to apply
image filters, crop the final best image to focus on an ROI [Suh et al. 2003], perform
a content-aware resizing operation [Avidan and Shamir 2007], or another image im-
provement process. Note that this step may be unnecessary if the final image is deemed
adequate by the system, and displaying an image may not be necessary for some users
and applications.

3.4. Framework Instantiations and Other Related Systems

Table I compares several interactive photography applications based on the components
of the proposed framework and whether the approach was designed for users with
visual impairments. The full description of our assisted photography application is
postponed until Section 4.1. Unless necessary for comparison, additional information
about our system is deferred to later sections.

Although most of the photography applications listed in Table I were already de-
scribed in Section 2.1, it is worth discussing a few additional aspects of their im-
plementation. For example, Headshot [Schwarz 2011] fits very well in our assisted
photography framework, although it was not designed for visually impaired users and
thus may pose problems for this target audience. Headshot considers a picture to be
badly composed until the face of a person is positioned in a manually set location in
the image. Visually impaired people, however, will have trouble choosing this location
because it may depend on the desired background of the picture, and reasoning about
this is hard without visual ques and out of physical reach. Alternatively, this system
could use image composition models that do not require manual input when the user
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is visually impaired. For example, the system could evaluate image composition based
on the size of the face in the image and its position (e.g., according to the rule of thirds
as in Dixon et al. [2003] and Kim et al. [2010]).

Other applications compared in Table I can be considered partial instantiations of
our framework. For example, Easy Snap in Document mode [White et al. 2010] helps
users center a book, newspaper, or banknote in the image, as well properly orient the
camera. The application provides audio feedback as suggested in the description of the
interactive aiming component of the proposed framework. However, the authors do not
explicitly indicate whether the user or the system decides when to stop processing new
views of the scene, and whether the system displays the final image. In addition, to the
best of our knowledge, the final picture taken is the last frame that was captured by
the camera, not the best one captured. The other modes in which EasySnap operates
[Jayant et al. 2011] let the user decide when to stop processing frames.

Our framework can also be seen as a real-time, automated time-shifting method to
help visually impaired users. Time shifting is a recent feature of camera phones, such
as the BlackBerry Z10 or Samsung Galaxy Note II, that records a sequence of frames
when the user takes a picture. After recording, the user can select a favorite frame as
the final image. Our proposal is similar in that we process a sequence of frames during
the interactive aiming phase, but rather than asking the user to select the best image
at the end, we propose to do it automatically and in an online fashion. Note that time
shifting does not help users aim the camera better.

Apple also has submitted patents pertaining to automatic frame selection when users
request capturing an image [James et al. 2010; Brunner et al. 2012]. These patents
describe systems that automatically select a frame from a collection that was captured
prior or simultaneously to the request and present this frame in response to the user.
The selection of the frame is described in terms of detected device movement using a
motion-sensing component or image contrast. However, assisted camera aiming is not
discussed in these patents.

4. EMPIRICAL EVALUATION

We implemented the proposed framework and conducted an experiment to evaluate our
system in the context of documenting accessibility barriers in public transit settings. We
chose this context because we believe that we can improve the communication between
riders and transit authorities by helping to collect visual evidence of problems. In turn,
this can help authorities appropriately solve the issues that matter to the community
[Steinfeld et al. 2010b].

4.1. Assisted Photography Application

We implemented the proposed assisted photography framework on an iPhone 4S, as in
Figure 1(b), because of its versatility and high levels of adoption by our main target
users. We constrained image orientation to portrait mode because this simplified train-
ing users on how to take pictures with our application, as well as our experimental
analysis. Nonetheless, landscape compositions could be implemented in the same man-
ner as portrait arrangements. We could make the system trivially identify and adapt
to these orientations based on data from the accelerometer in the device.

The problem of estimating image quality in a documentation context is difficult, but
it is dramatically simplified by the task characteristics. First, aesthetics are not an
issue for problem documentation, thereby mitigating a significant challenge. Second,
we do not need to know what the barrier is—we only need to know where it is. Although
being able to automatically annotate barriers might be useful for documentation, it is
not essential. This mitigates the need for object recognition. Third, we can assume that
riders are able to localize the barrier that they want to document in space and roughly
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Fig. 3. Automatically proposed view on simulation test.

aim a camera in the proper direction, as assumed in Section 3.1. This means that only
small camera motions are needed to balance photo composition and correct unwanted
camera orientation.

Image quality assessment is performed by our system using a centering image com-
position model with a strong preference for detailed and sharp images. This composition
model dictates that the target of the picture should be centered in the middle of the
composition. If two images are composed similarly, our system selects the image with
less blur.

We believe that centering the target is appropriate for the documentation context
because it naturally highlights evidence for documentation purposes and increases the
chance of including relevant context in images. Consider Figure 3 as an example. Our
system initially estimates that the target is in the top-right part of the image and
suggests positioning this region in the middle of the picture. As a result, the bus stop
sign becomes the main element of the composition, and the image includes a wider
variety of surrounding context.

The following paragraphs describe our implementation of the assisted photography
framework for the documentation task. Some of the information provided below was
summarized in Table I, and more details are given in our electronic Appendix A. This
appendix describes how we implemented the main processing routine of our application
from a systems perspective and details our choice of parameters.2

4.1.1. Manual Aiming. Our system waits for the user to roughly aim the camera toward
the target of interest before entering the interactive aiming phase. The system displays
the camera view on the phone screen during this period and waits for a tap gesture
from the user.

Our system behaves just like a regular point-and-shoot camera up to when the
manual aiming phase ends at the tap gesture. For this reason, we can analyze the first
image processed when the interactive aiming phase starts as if it had been taken with
a conventional camera.

4.1.2. Interactive Aiming. Our system estimates a region of interest (ROI) in the first
image captured after the tap gesture and suggests this region as the new image center.
The ROI is expected to contain the target being photographed or at least a significant
portion of it.

Our technique to estimate the ROI is based on visual saliency and can be described
as a method to avoid leaving out information that is expected to be most relevant.
We opted for visual saliency because we can compute it quickly from low-level visual
features and, more importantly, because the transit domain is strongly composed by
conspicuous elements. For example, bus stop signs are generally designed to be easy

2Code is available at https://github.com/marynelv/assisted-photography.
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Fig. 4. ROI selection process. Figure 4(c) shows all potential regions of interest in different colors, and
Figure 4(d) shows the selected ROI in white. The suggested image center (weighted mean of the ROI) is
depicted in Figure 4(a) as a rectangle.

to identify, with bright colors and contrasting elements (Figure 3). Similarly, hydrants
(Figure 4(a)), route signs, traffic cones, and other transit elements are salient in their
context. Recognition capabilities could be added to the system to make it more robust,
but this could limit the ability to satisfy our real-time operation constraints.

Rationale, algorithm details, and evaluation of our ROI estimation approach can be
found in Vázquez and Steinfeld [2011a]. The following procedure briefly summarizes
the steps of this method for completeness:

(1) Compute a saliency map from the image, which encodes local conspicuity in a
manner akin to Itti and Koch [2001].

(2) Threshold the saliency map to generate candidate regions of interest.
(3) Select the most meaningful candidate region based on its size and the amount of

saliency that it contains.

The weighted center of the ROI is suggested as the new center for the image, using
saliency for the weights (Figure 4).3 The suggested center is biased toward the most
salient point in the ROI, which may not be the most salient point in the image. If we
chose the most salient point in the image directly, then our proposed center would be
driven toward small salient regions that are less likely to be a good composition subject.
For example, the point of maximum saliency in Figure 4(a) is a tiny portion of green
grass located in the top-right corner of the picture.

If the ROI is not centered in the first image after the tap, then users are given the op-
portunity to improve image composition by slowly changing their aiming direction. The
system processes every frame received thereafter as fast as possible and keeps track
of the best image captured so far, based on the position of the ROI in the composition
and blur. We track the ROI in successive frames through a standard template match-
ing algorithm [Baker and Matthews 2004] and estimate blur using a non-reference
blur metric [Crete et al. 2007]. This metric does not require a template image to es-
timate blur, which makes it particularly well suited for blur estimation in dynamic
environments.

The application operates in one of three feedback modes during this interactive
aiming phase:

—Speech-based feedback: Spoken words provide information about the relative orien-
tation of the suggested center with respect to the middle of the composition, as well
as the distance between the two. The system repeatedly speaks “up,” “down,” “left,”
or “right” to indicate orientation toward a better composition. Words are spoken with

3We frequently abuse terminology and use region of interest and suggested center (computed from the ROI)
interchangeably. Centering the ROI in the middle of the composition is undefined when this region is
asymmetric. Thus, readers should keep in mind that centering the ROI is, effectively, centering the weighted
mean of this region in the middle of the composition.
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different pitch, indicating how close the suggested center is to the middle of the
image. Higher pitch means closer.

—Tone-based feedback: The pitch of a looping tone indicates distance from the suggested
center to the middle of the image. As before, higher pitch means that the user is closer
to the recommended position. No orientation information is provided.

—Silent feedback: The system lets the user capture the scene continuously without
providing any audible guidance.

The underlying operation of the system is the same with all feedback modes. Although
silent feedback does not seem appropriate for visually impaired users, we believe that
this mode is still interesting because it does not reduce surrounding awareness through
noise pollution and allows users to take pictures without attracting others’ attention.
We sometimes call this paparazzi mode since it would be effective when holding a cam-
era above a crowd. Similar to other modes, silent feedback requires real-time operation
to track the ROI as the camera moves and to update the information displayed to the
user on the screen of the device. With respect to the latter, the system renders the
current view of the camera on the screen for users who can see the display. In addition,
the system draws an overlay marker to indicate the location of the suggested center.

Our application alerts the end of the interactive aiming phase by playing an audio
clip. This happens when the ROI has been centered, tracking fails, or the user spends
more than 1 minute attempting to improve the image. The first case is the ideal
situation, in which users were able to compose the image as proposed by the system.
The second case occurs when the ROI cannot be tracked from one frame to the next,
such as if the ROI ends up moving outside of the image or template matching fails due
to extreme blur from fast camera motion. The third case happens when users exceed
our time limit for improving image composition. The latter usually occurs when a user
does not change the aiming direction significantly and holds the camera phone still.

4.1.3. Final Image Display. Our system shows the user the best image captured during
interactive aiming as the final image. If the device was held vertically when this picture
was taken (i.e., the device was not tilted too much), then our system also processes the
image before displaying it on the screen to correct for excessive camera roll. We detect
when the phone is held straight using the accelerometer values registered when the
picture was taken and correct camera roll by rotating the picture in plane. We believe
that this correction facilitates image understanding in the documentation context,
because it makes vertical elements appear vertical in the composition rather than with
a different orientation. Figure 5 shows an example.

4.2. Participants

There were three groups of six participants each: full vision or corrected to full vision
(F), low vision (L), and blind (B). Although the first group may seem unnecessary,
universal design practices recommend testing systems for broad appeal. The second
group included participants with a wide range of visual impairments, none of whom
could easily read the screen of an iPhone. The third group was limited to participants
who could only perceive the presence of light or were totally blind.

Participants were recruited from local universities and the general public using
contacts in local organizations and community email lists. Participants were required
to be 18 years of age or older, fluent in English, and not affiliated with the project.
During recruitment, the participants were informed that they would be completing
surveys and documenting items in our laboratory. All participants were paid and fully
consented.
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Fig. 5. Automatic camera orientation adjustment of our assisted photography application. The system
rotates the best image captured during the interactive aiming phase to correct for unwanted camera roll.
This correction only happens when the phone is mostly held vertically—that is, the phone is not pointed
significantly upward or downward. The corrected image is the final picture displayed to the user.

Fig. 6. Simulated bus shelter used for our study. The schedule sign and the obstacles documented by
participants were inside the shelter.

4.3. Experimental Setup

We used a simulated bus shelter inside our laboratory for the study (Figure 6). This
shelter included a bench, a tempered glass panel on the upstream side of the shelter, a
place to mount route information signs, and a bus stop sign. The shelter was comparable
in dimensions and layout to real shelters in the Pittsburgh area and was used to limit
bias from lighting conditions, bystanders, and inclement weather.

We used a within-subjects design and counterbalanced the three interaction modes
(speech, tone, and silent) using a three-level Latin square. Conditions were tested with
two documentation tasks: a damaged and nonaccessible schedule sign (shoulder height
on side wall near glass) and ground obstacles inside the shelter (back-left corner).
Although the schedule sign might seem inappropriate for blind users, it can be of
their interest when it contains tactile material, such as content in Braille. Likewise, it
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can contain machine-readable optical labels, such as QR codes, with more information
about the bus stop.

Participants were asked to take three practice pictures during the beginning of
each condition to become familiarized with the feedback modes. These pictures were
taken at a table in the laboratory, and their content included common objects (e.g.,
a plastic container, magazines). After practice, participants were asked to take six
trial pictures per condition, alternating between the schedule and the obstacles. Half
of the participants per group started with the schedule as initial documentation task,
whereas the rest started with the ground clutter. The duration of the experiment varied
depending on the speed in which participants completed the tasks.

Participants were asked to imagine that they were waiting for a bus and to document
the aforementioned issues using our assisted photography application. They were free
to take pictures from where they thought was best for documentation. We did not guide
participants toward the schedule or the obstacles, as we did not want to induce bias for
particular camera angles.

Although the shelter closely mimicked a real shelter, we worried that participants
with visual impairments would not be able to find the schedule or the obstacles quickly
during the first trial. This initial learning phase could bias the results, so we gave
participants a tour of the shelter at the beginning of the study. We removed the ground
clutter to allow participants to navigate freely and familiarize as they would in a real
situation. There was also concern that visually impaired participants would get a sense
of where the schedule and the obstacles were and would try to take pictures from afar
without having confirmed the location of the target. To make the study more realistic,
we asked the participants to physically find the problems before documenting them.

The application started recording data when users tapped the screen up until they
were done taking a picture. Logged measures included the length of the interactive
aiming phase, the distance from the suggested center to the middle of the composition,
device acceleration, and other useful metrics.4 After each feedback mode, participants
completed an identical postcondition survey with questions about ease of use, useful-
ness, and social comfort on a seven-point scale. See Vázquez and Steinfeld [2012] for
more details.

Participants also completed a pretest survey covering demographics, disability, and
technology attitudes, as well as a posttest survey covering experiences and preferences.
The former was a subset of questions developed by the Quality of Life Technologies
Engineering Research Center [Beach et al. 2009]. These were selected to provide the
option to draw inferences to the thousands of samples collected by the survey developers
and related transportation studies (e.g., Beyene et al. [2009]). The latter included
questions on transit complaint filing, technology use, and seven-point scale ratings for
feedback mode preference.

4.4. Measures

The results presented in this article are focused on the data collected from the 324
trials in which participants used our application to take a picture (18 participants ×
6 pictures × 3 feedback modes). Survey results and camera aiming statistics from
Vázquez and Steinfeld [2012] are summarized in this article to complement our analysis
of the following:

—The ROI selection process in our experimental environment
—Third-party target identification

4An average of 16 frames per second were processed in our experiments, with added background logging
processes for data analysis.
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Fig. 7. Example images considered in our third-party evaluation. The differences between the images are
better observed digitally with zoom. Refer to Section 4.4 for more details.

—Third-party image understandability
—Perceptible image quality based on blur.

The effectiveness of our ROI estimation approach was measured by counting the
number of times the suggested center (inside the ROI) fell into the target being pho-
tographed. This count considered the first images processed during the interactive
aiming phase and ignored those pictures where the target was not in the composition.
The latter are cases in which our main assumption was not true: users did not aim the
device roughly in the right direction during the manual aiming phase.

A subset of 867 pictures logged during the experiment were evaluated by third-party
observers through Amazon’s Mechanical Turk. A total of five surveys were collected per
image, and $0.04 was paid for each complete survey pertaining target identification,
image understandability, and blur. For a given trial, we considered:

—The first image processed when the interactive aiming phase started (Ii)
—The image with the suggested center closest to the middle of the composition (Ic)
—The image considered to be the best one by our system (Ib)
—The rotated best image (IR

b ).

Note that Ii, Ic, and Ib may all be the same for a trial, because it is possible that the
initial image provided by the user is well composed for our image composition model.
Similarly, it is possible for Ii to be different than the best Ib but for Ib to still be equal
to Ic. In addition, some trials may not have a rotated best image IR

b , since our system
only compensated for unwanted camera roll if the phone was held mostly straight up.
Figure 7 shows examples of these pictures.

The instructions provided to the workers introduced the task with an image similar
to Figure 6, where the schedule sign and the trash were identified. The instructions
then directed the workers to answer a short survey about a picture taken to document
either barrier and provided examples on how to fill this survey and rate image blur.
Appendix B provides for more details.

The survey was presented next to the image being evaluated and without explicitly
indicating whether the trash or the schedule sign were the intended target. Survey
questions were asked as follows:

(1) Rate the following statement (seven-point scale): I can easily identify the main
subject of the picture.

(2) What do you think is the main subject of the picture? (option 1) trash, (2) schedule
sign, (3) other, (4) don’t know.
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(3) In which part of the image is the main subject? (option 1) In the center, (2) in the
left side, (3) in the right side, (4) in the top part, (5) in the bottom part, (6) in
the bottom-right part, (7) in the bottom-left part, (8) in the top-right part, (9) in the
top-left part, (10) the main subject is not in the image.

(4) Rate your perception of blur in the whole image: (1) imperceptible, (2) perceptible
but not annoying, (3) slightly annoying, (4) annoying, (5) very annoying.

(5) Rate the following statement (seven-point scale): I am confused about what the
photographer tried to capture because the picture is hard to understand.

The first and last questions were rated from 1 to 7, from “strongly disagree” to
“strongly agree,” and were used to measure image understandability. The second ques-
tion was open in the sense that workers could select “other” (option 3) and indicate
what they thought was the main subject of the composition in their own words. For
cases where “other” was selected and the workers indicated a main subject that aligned
with the actual target problem being photographed, we considered as if the target had
been selected. For example, when a worker indicated that the main subject was the
“broken glass” that covered the schedule sign, we counted his response as if he had
selected “schedule sign” (option 2) in the second question of the survey.

The responses to the second question were used to analyze target identification, the
third to check if workers were paying attention to the task, and the fourth to examine
the effect of incorporating blur into our image quality evaluation process. We used a
standard procedure for evaluating perceptual image quality based on blur [Crete et al.
2007] and averaged blur ratings per image as a mean opinion score (MOS).

5. RESULTS

This section analyzes the data collected during the study and mostly presents new
results on the content of the pictures captured by the participants. Statistical test as-
sumptions (e.g., normality) were verified as part of our analysis. We encourage readers
to refer to Vázquez and Steinfeld [2012] for more details on survey results and camera
aiming statistics, and to Vázquez and Steinfeld [2011a] for a more complete evaluation
of our ROI estimation approach.

5.1. Demographics

A total of 18 participants were recruited for the study. Participants were categorized
into full vision (F), low vision (L), and blind (B) groups based on the information they
provided when completing our demographics survey, and on how well they could see
and read the screen of the iPhone used to take pictures. Only one participant self-
categorized himself as being in a different group than that to which he was assigned.
He said that he was low vision but did not mention using any vision aid and was able
to read and write as well as the full vision participants. Therefore, we assigned him to
the (F) group for the purposes of this study.

The average ages per group were 24, 56, and 55 years for the (F), (L), and (B) groups,
with standard deviations of 6.7, 11.8, and 12.1, respectively. The percentage of women
completing the experiment for (F), (L), and (B) was 50%, 50%, and 83%, respectively.
Visually impaired participants reported using white canes (58%), guide dogs (25%),
magnifiers on glasses (25%), tinted glasses (25%), handheld telescopes (17%), and other
devices to get around. One blind participant reported that she wore hearing aids.

All visually impaired participants had a cell phone, and 66.7% of these devices had a
camera. In the full vision group, six out of six participants said that they take photos,
whereas three and one in the low vision and blind groups said that they take photos. In
terms of device usage, 25% of the participants in the (L) and (B) groups said that they
take pictures with a phone, whereas only 33% of the low vision participants reported
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Fig. 8. (a) The number of times the desired target was in the view of the camera when the interactive aiming
phase started. (b) The frequency at which the suggested center fell in the desired target when the interactive
aiming phase started.

using a regular camera. Three totally blind participants said that they had never taken
a picture before.

Only one participant in the fully sighted group said that he had filed a complaint
about a transit problem, whereas five people in the (L) group and six in the (B) group
reported having filed complaints. Phone calls were the common way of reporting prob-
lems for visually impaired participants.

5.2. Initial Aiming

There were 12 trials, 4% of 324, in which participants failed to roughly orient the
camera in the right direction during the initial aiming phase. These are cases in which
the ground obstacles or the schedule sign were not in the picture from which the ROI
was estimated. Figure 8(a) shows the distribution of the remaining trials in which
participants roughly aimed in the proper direction and captured at least part of the
desired target when the interactive aiming phase started.

The initial image (Ii) was selected as the best image of the trial 25% of the time.
Our application considered the initial aiming position provided by the user was good
enough in these cases, or that any image processed afterward did not significantly
improve image composition. We performed a restricted maximum likelihood (REML)
analysis [Patterson and Thompson 1975; Stroup 2012] to evaluate the frequency (out
of one) at which this happened on the effects of participant Group (full vision, low
vision, and blind), image Target (ground obstacles and schedule sign), and Participant
as random effect and nested by Group. This analysis resulted in a significant difference
only for Target (F[1, 106] = 7.54, p = 0.007). The Student’s post hoc t-test showed that
the frequency at which Ii was selected as the best image was significantly higher for
the sign (M = 0.31, SE = 0.31) than for the ground obstacles (M = 0.19, SE = 0.23).
In other words, the initial aiming position provided by the participants when capturing
the schedule sign tended to be better than the initial position provided when capturing
the ground obstacles, according to our image composition model.

5.3. Suggested Center

We computed the frequency (over one) at which the suggested center was selected
by our system inside the intended target. We considered the three pictures taken
per participant Group, feedback Mode, and Location to compute this frequency. On
average, our system successfully suggested a new center inside the target 70% of the
time (N = 108, SE = 0.04), considering as false cases the 12 initial images for which
participants failed to roughly aim the camera in the proper direction.
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Table II. Distribution of the 113 Images in Which at Least One Mechanical Turk Worker
Did Not Identify the Intended Target as the Main Subject of the Composition

Silent Tone Speech Total (per Group)
Full Vision 1 (1%) 9 (8%) 8 (7%) 18 (16%)
Low Vision 11 (10%) 9 (8%) 4 (3%) 24 (21%)
Blind 26 (23%) 26 (23%) 19 (17%) 71 (63%)
Total (per Mode) 38 (34%) 44 (39%) 31 (27%)

We conducted a REML analysis for the frequency at which the suggested center
fell in the target. Group and image Target were considered as fixed effects, whereas
Participant was a random effect nested within Group. We found significant differences
for Target (F[1, 106] = 59.28, p < 0.001) and the interaction between Group and Target
(F[2, 105] = 16.01, p < 0.001). The Student’s post hoc test for the former showed that
the frequency at which the suggested center fell in the schedule sign (M = 0.88, SE =
0.03) was significantly higher than for the ground obstacles (M = 0.53, SE = 0.06).
Figure 8(b) shows the average results per Group and Target.

The fact that our ROI estimation approach was not as successful with ground obsta-
cles as with the schedule sign is strongly related to our reliance on visual saliency. The
schedule sign pops out visually in its context more than the trash. Plus, participants
tended to take pictures closer to the sign than the trash, especially those in the (F)
group. Naturally, when more context is added to the picture, the less relevant a partic-
ular target becomes. As mentioned previously, object recognition could be added to our
system to improve the suggestion of a new target to the user. However, this is out of
the scope of the present work.

Although these objective results are an indication of the success of our approach at
suggesting an appropriate image center, they do not tell the whole story. These results
do not consider the overall appearance of the images. In some cases, for example, users
may have taken a picture very close to the target and our system may have succeeded
at suggesting a new center inside the schedule sign or the trash. However, the image
may have been taken so close that it turned out to be difficult to understand. Likewise,
in many cases, our system may have suggested a new center that was not contained
in the target but still helped improve the composition. For this reason, we suggest
considering these results alongside the following third-party image evaluation.

5.4. Image Subject Identification

Third-party observers were surveyed about the main subject of the compositions, as
explained in Section 4.4. We found that all five workers who evaluated 87% of these
pictures agreed that the main subject was the intended barrier captured by the pho-
tographer. The remaining 113 pictures did not have consensus across the workers and
were mostly taken by blind participants. Table II details these results.

The lack of consensus for the (F) group with respect to the main subject seemed
high considering that fully sighted participants had no trouble roughly aiming the
camera in the proper direction. Further inspection of the data led us to realize that
the results of Table II for the (F) group corresponded to pictures taken by a single
full vision participant. This participant tended to take pictures far from the targets,
as compared to the other participants, and these longer shots complicated our ROI
estimation process. Furthermore, these shots also generated confusion between third-
party raters with respect to the main subject of the pictures.

We computed the percentage of third-party evaluators who did identify the intended
target as the main subject in the set of pictures without consensus. A REML analysis
with participant Group, feedback Mode, image Type (Ii, Ic, Ib, and IR

b ), and intended Tar-
get as main effects, as well as Participant as random effect nested by Group, revealed
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Fig. 9. MOS for the images that were rated through Amazon’s Mechanical Turk. A lower MOS is better.

significant differences for Target (F[1, 111] = 7.08, p = 0.009). The average percentage
of workers who identified the trash as the main subject (M = 0.51, SE = 0.06) was
significantly higher than the average for the schedule sign (M = 0.42, SE = 0.04). No
other effects or interactions were significant, but Group was close. On average, 63%
of the evaluators identified the intended target as the subject in the pictures taken
by fully sighted participants (SE = 0.05), 53% in the pictures taken by low vision
participants (SE = 0.07), and 38% in the remaining cases (SE = 0.04).

5.5. Perceptible Image Quality Based on Blur

We checked for consistency between the five blur ratings collected per image through
Mechanical Turk (Cronbach’s alpha 0.89) and averaged these responses to create an
MOS for blur.

We found a significant correlation between the MOS and the automatic blur metric
of Crete et al. [2007] that we used in our system (r(824) = 0.56, p < 0.001). This
correlation was computed considering all images for which our system estimated blur
in real time and were evaluated by third-party observers.

To further examine the MOS obtained from Mechanical Turk, we conducted a REML
analysis with participant Group, feedback Mode, intended Target, and image Type (Ii,
Ic, Ib, and IR

b ) as main effects, along with Participant as random effect nested within
Group. This analysis resulted in significant differences for Group (F[2, 864] = 7.33, p =
0.006), Target (F[1, 865] = 5.55, p = 0.02), and Type (F[3, 863] = 23.20, p < 0.001).
The average MOS tended to be lower (better) for the fully sighted group, followed by
that of the low vision group (Figure 9(a)). The Tukey-HSD post hoc showed that the
difference in MOS between the (F) and (B) groups was significant in this respect. In
addition, the pictures of the ground obstacles were significantly less blurred (M = 2.2,
SE = 0.05) than those of the schedule sign (M = 2.45, SE = 0.04), and the images Ic
(M = 2.00, SE = 0.07) and Ib (M = 2.10, SE = 0.06) were significantly less blurred
than the initial images Ii (M = 2.64, SE = 0.06). The difference between Ii and IR

b
(M = 2.34, SE = 0.07) was not significant, suggesting that the rotation applied to some
of the best pictures induced noticeable blur artifacts. Last, we also found significant
interactions between Group and Mode (F[4, 862] = 2.64, p = 0.03), Group and Target
(F[2, 864] = 6.67, p = 0.001), and Group and Type (F[6, 860] = 6.29, p < 0.001). In the
first case, the post hoc showed that the pictures taken by blind participants with speech
feedback were significantly more blurred than those taken by fully sighted users. In
the second case, the pictures of the ground obstacles taken by full vision participants
were significantly less blurred (M = 1.69, SE = 0.05) than the rest, except for the
pictures of the schedule sign taken by low vision participants (M = 2.41, SE = 0.08).
In the third case, the post hoc analysis showed that the initial pictures Ii taken by low
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Fig. 10. Results for the initial images (Ii) for which the intended target was identified as the main subject
by third-party raters. (a) Understandability for Ii per participant Group. (b) The number of images in which
the initial image did not have the ROI centered in the composition but had the smallest distance between
the ROI and the center compared to following frames.

vision participants were significantly more blurred than all other photos taken by this
group.

There were cases in which the best image of a trial (Ib) did not have the minimum
distance between the ROI and the middle of the composition, compared to all other
images processed during the interactive aiming phase. This is because we evaluated
image quality based on blur regardless of the distance between the ROI and the image
center. To check if this extra consideration was useful, we performed an additional
REML analysis of MOS on the effects of participant Group, image Target, feedback
Mode, and image Type (Ic and Ib), with Participant as random effect nested within
Group. The analysis excluded all cases where Ic = Ib—that is, where the best image
was the picture that had the suggested center closest to the middle of the composition.
We found significant differences for image Type (F[1, 264] = 4.97, p = 0.027). The
average MOS for the selected best image Ib was significantly lower (better) than the
one for Ic, as shown in Figure 9(b).

5.6. Image Understandability

We created an Understandability index by averaging the seven-point scale responses
obtained for I can easily identify the main subject of the picture and I am confused
about what the photographer tried to capture because the picture is hard to understand
(reversed). Cronbach’s alpha was 0.89, above the nominal 0.7 threshold for question
reliability.

Understandability was used to compare the images in the set with subject consensus,
where all Mechanical Turk raters agreed that the main subject was the intended target.
Analyses were performed as follows.

5.6.1. Initial Images. Average Understandability ratings for the first images Ii in the
group with consensus were positive in general (M = 5.6, SE = 0.07, N = 274). To
check for differences between these images, we conducted a REML analysis on Un-
derstandability with Participant as random effect nested within Group, and with par-
ticipant Group, image Target, feedback Mode, and Final Best Image as main effects.
The latter corresponds to whether or not an image was selected as the final best (Ib)
for its trial. Only significant differences per Group were found between initial images
(F[2, 271] = 13.09, p < 0.001), as shown in Figure 10(a). The Tukey HSD post hoc
showed that Understandability was significantly higher for the initial images in the
(F) group compared to the (L) and (B) groups. Although the difference was not signifi-
cant between the latter two, there was an upward trend in favor of the (L) group. These
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Fig. 11. Understandability for first images (Ii) and those with the suggested center closest to the middle of
the composition (Ic). Third-party raters agreed that the main subject of these pictures was the target.

results align with camera-aiming statistics discussed in Vázquez and Steinfeld [2012],
including the fact that the suggested center was significantly farther away from the
middle of the first images captured by blind participants compared to those captured
by the (F) and (L) groups. No other effects or interactions were significant in terms of
Understandability.

Given the previous results, we decided to further analyze the 60 first images that
were selected as the best (Ib) in the group with consensus. We found that 40% of this set
were Ii pictures with the ROI centered in the middle of the composition. This percentage
represents 24 trials in which the interactive aiming phase ended immediately. Of these
trials, 16 belonged to the (F) group (67%), 6 to the (L) group (25%), and 2 to the (B)
group (8%).

A subset of 19 initial images with subject consensus did not have the suggested
center in the middle of the composition but had the smallest distance between these
two points compared to all following frames in their trial. Most of these images were
taken by the (B) group, whereas none were taken by participants in the (F) group, as
shown in Figure 10(b). Similar results were observed for the average percentage of time
that users increased the distance from the suggested center to the middle [Vázquez
and Steinfeld 2012].

5.6.2. Centering the Suggested Center. There were 223 trials in which the the initial
image (Ii) was different from the picture with the suggested center closest to the
middle of the composition (Ic), and where both pictures had third-party consensus with
respect to the main subject. We conducted a REML analysis to check for differences
in Understandability between these images, considering participant Group, feedback
Mode, image Target, and image Type (Ii and Ic) as main effects, as well as Participant
as random effect nested within Group. We found significant differences for Group
(F[2, 443] = 9.14, p = 0.003). Average Understandability ratings were significantly
higher for images in the (F) group (M = 6.27, SE = 0.05, N = 170) compared to those
in the (B) group (M = 5.24, SE = 0.09, N = 116). We also found significant differences
for image Type (F[1, 444] = 32.08, p < 0.001), with average Understandability ratings
of 5.64 (SE = 0.07) for Ii and 6.04 (SE = 0.06) for Ic. As depicted in Figure 11, the
interaction between Group and Initial image was significant as well (F[2, 443] = 7.73,
p < 0.001). Centering the suggested center brought Understandability ratings for the
(B) group up to the levels of the (L) group without assistance, and those of the (L) group
up to the levels of the (F) group. The interaction between Mode and Target was slightly
significant (F[2, 443] = 3.02, p = 0.049), and a Tukey HSD post hoc did not reveal any
pairwise significant differences.
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5.6.3. Final Image Selection. To evaluate the effect of our image composition model, we
compared third-party Understandability for the initial image processed (Ii) and the
final best (Ib). We excluded those cases where Ii = Ib, and where at least one of these
images did not have third-party subject consensus. A REML analysis with Participant
as random effect nested within Group and participant Group, feedback Mode, image
Target, and image Type (Ii or Ib) as main effects showed significant differences. The
results for Group (F[2, 415] = 10.51, p = 0.001) were similar to previous findings:
group (F) was significantly better than group (B) in terms of Understandability, and
there was a trend in favor of group (L) in comparison to group (B). With respect to
Type, F[1, 416] = 35.99 (p < 0.001), the best images had significantly higher average
Understandability, M = 6.06 (SE = 0.06), than the initial images, M = 5.61 (SE =
0.07). The interaction between Group and Type was also significant (F[2, 415] = 6.13,
p = 0.002). A Tukey HSD post hoc showed that blind participants reached the ratings
of the low vision group after the interactive aiming phase. In a similar manner, low
vision participants reached the Understandability ratings of the full vision group by
using our system. These results are strongly aligned to those obtained for Ii versus
Ic, as presented in Figure 11. In addition, the interaction between Group and Mode
was marginally significant (F[4, 413] = 2.47, p = 0.044). The post hoc revealed that
Understandability ratings were significantly lower when group (B) took pictures in
silent and tone modes in comparison to group (F).

Since the differences between Ii and Ib were very similar to those obtained between
Ii and Ic, we did another REML analysis on Understandability to compare Ib versus
Ic. We considered those images with third-party subject consensus and discarded trials
with Ib = Ic—that is, where the final best image had the ROI closest to the middle of
the composition. We tested for differences on participant Group, feedback Mode, image
Target, and image Type (Ib or Ic), with Participant as random effect nested within
Group but only found significant differences for Group (F[2, 207] = 8.51, p = 0.005).
No novelties were observed in this case.

In addition, we inspected the differences in Understandability between all final
best images (Ib) with third-party subject consensus (N = 222). A REML analysis
with Participant as random effect nested by Group and participant Group, feedback
Mode, and image Target as main effects resulted in significant differences for Group
(F[2, 219] = 5.39, p = 0.02). As before, the post hoc showed that Understandability
was significantly higher for Ib taken by group (F) than by group (B). The effect of Target
and the interaction between Group and Target were close to significant, with similar
trends to those presented previously.

5.6.4. Camera Roll Compensation. The distribution of the rotated pictures IR
b was unbal-

anced between targets. Only 11% of these pictures were taken when participants tried
to photograph the ground obstacles, because users tended to tilt the phone downward
in this case.

We conducted a REML analysis on Understandability for the final best images (Ib)
and their rotated version (IR

b ), when our system adjusted for camera roll. We considered
Participant as random effect nested by Group, as well as Group, feedback Mode and
image Type (Ib and IR

b ) as main effects, but only Type resulted in a slight significant
difference (F[1, 202] = 4.19, p = 0.042). The Student’s post hoc showed that the final
best images Ib had significantly higher Understandability (M = 6.11, SE = 0.08) than
their rotated counterparts (M = 5.93, SE = 0.08).

We presented the rotated images on Mechanical Turk as in Figure 5(c) and believe
that this had a slight negative effect on ratings, especially when camera roll was
significant. It is possible that if we had cropped the rotated images to make them look
vertical, like the rest, we may have obtained different results.
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Fig. 12. Average ratings on Ease of Use, Usefulness, and Social Comfort per group.

5.7. Postcondition Ratings

We surveyed participants’ opinion about our assisted photography application after
they tried each of our feedback modes, as reported in Vázquez and Steinfeld [2012]. We
summarize the survey data here for convenience. Postcondition survey responses were
grouped into three categories: Ease of Use, Usefulness, and Social Comfort (Cronbach’s
alpha 0.849, 0.833, and 0.828, respectively). These responses were analyzed using a full
factorial ANOVA with participant Group and feedback Mode as main effects, followed
by a Tukey HSD post hoc where appropriate. ANOVA analyses did not reveal any
Ordering effects.

Ease of Use ratings for our application were positive in general, as depicted in
Figure 12. There was a significant difference on Ease of Use between participant Groups
(F[3, 50] = 6.61, p = 0.003). Full vision participants gave statistically significant
higher ratings for Ease of Use with respect to the other groups. No other effects or
interactions were significant for Group and Mode, but a slight upward trend was
observed for speech.

There were significant differences in Group on Usefulness (F[2, 51] = 3.57, p =
0.036) and Social Comfort (F[2, 51] = 5.67, p = 0.006). The post hoc analyses revealed
that full vision participants reported significantly reduced Usefulness and Social Com-
fort than low vision participants (Figure 12). Note that full vision participants still
rated Usefulness and Social Comfort in the middle—not at the low end. Although
the interaction between Group and Mode was not significant, we noticed a trend sug-
gesting that Social Comfort is not affected by audio feedback for people with visual
impairments.

5.8. Posttest Ratings

A full factorial ANOVA showed significant differences in Mode on posttest preference
ratings (F[2, 51] = 3.32, p = 0.045). At the end of the study, speech mode ratings
(M = 4.9, SE = 0.5) were significantly higher than silent mode (M = 3.6, SE =
0.5). Although differences in preference for Group were not significant, there were
differences in the interaction between Group and Mode (F[4, 50] = 13.85, p < 0.001).
Visually impaired participants preferred audio feedback over silent mode, whereas
participants in the full vision group did the contrary (Figure 13).

5.9. Other Findings

Although speech mode was preferred in many cases, we were able to notice some
difficulty with the spoken sounds when the phone was held in an orientation other
than straight up. For illustrative purposes, consider the case when the system says
“up” to indicate that the suggested center is in the upper part of the image. If the
user is holding the phone straight up (vertically), then it is natural to translate the
device upward to bring the center to the middle of the picture. However, if the phone
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Fig. 13. Posttest preference ratings by feedback Mode and user Group.

is aimed downward, such as toward the ground, then the user should move the phone
forward to frame the suggested center in the middle of the composition. This dichotomy
was a problem for several blind participants when aiming downward, who ended up
translating the phone upward rather than forward. It was hard for these participants
to understand why it was taking so long to center the target in these cases.

Qualitative data, mostly in the form of interviews and comments, were captured
during this study. Only one blind participant expressed no interest at all in photogra-
phy, saying that she would only take pictures if there was a way that she could feel
images (e.g., feel the shape of buildings and big spaces). All other visually impaired
users indicated that they like, or would like, to take pictures of events, people, and
objects.

Although speech feedback was generally preferred by the visually impaired commu-
nity, some participants pointed out that this might change with extended use of our
system. In particular, one blind participant said, “Now that I am not experienced, I
prefer voice (speech mode), but once I learn, I might prefer the tone.” He then com-
pared the learning curve of our system with the Bop It! game by Hasbro Inc., implying
that it is difficult to follow the instructions when starting to play, but after a while, the
player becomes an expert and the game is easier to follow.

One low vision participant was a photographer who has been losing his sight progres-
sively. He cleaned the iPhone camera prior to use and was very concerned about taking
the “best” picture for documentation purposes. He kept repeating to himself, “What do
you think tells the best story?” Throughout the experiment, he became excited with
the system because it was suggesting centers close to the middle. In other words, the
application tended to judge his initial camera aiming position as appropriate.

Multiple visually impaired participants used the application to take a picture of their
guide dog, as shown in Figure 14, and requested a copy for their personal use. Other
participants with visual impairments suggested using the system for documenting
potholes, which they considered extremely dangerous.

6. DISCUSSION

In general, our assisted photography application helped users take better pictures
in real time. Third-party Understandability ratings for the final pictures taken were
significantly better than for the first images processed by the system. This suggests
that our approach is better than a traditional camera. Although our ROI selection
process failed to suggest a new image center inside the desired target in some cases,
average Understandability ratings were not reduced with the use of our system.

The Understandability results showed that our system helps blind participants
achieve the level observed for the initial images in the low vision group. Likewise,
our system elevates low vision participants to the level of unassisted, full vision partic-
ipants. It is our hope that this boost in image quality with the use of our system enables
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Fig. 14. Other pictures taken by the participants with our assisted photography application.

the development of other assisted photography applications that can positively impact
the visually impaired community. Computer vision performance is heavily influenced
by image quality, and this boost may permit previously infeasible applications.

We did not find significant differences between silent, tone, and speech feedback in
terms of Understandability for the best images captured with our application. However,
in general, audio feedback helped steer users toward centering the suggested center in
the pictures more efficiently.

Participants had different preferences with respect to feedback modes. In particular,
we observed trends in favor of speech mode for the visually impaired community. Sub-
jective opinions on Ease of Use and Usefulness showed that orientation information,
provided only by speech mode, seemed to help users center the ROI more easily. These
results were supported by objective data, such as aiming time and how often the ROI
was centered.

6.1. Possible System Improvements

Although speech mode tended to increase the performance of visually impaired users,
we also noticed that our selection of spoken sounds were confusing in some situations.
We used “up,” “down,” “left,” and “right” to indicate how the device should be moved to
center the ROI based on the location of the suggested center in the image. Instead, we
should have provided these instructions based on how the device was held by the user.

Our assisted photography application did not know when participants were roughly
aiming the camera in the proper direction or not, because it did not know the intended
target. Even if it had known what participants were going to capture, it did not have
object recognition capabilities to identify the target. Thus, the system could be improved
by adding a few models of typical objects that users are expected to photograph. When
the application starts, it could ask users what the target is and then decide if object
recognition is appropriate for suggesting a new center based on the models in memory.
If the system does not have a model for the target, then it could fall back to image
saliency, as currently implemented, for estimating the ROI.

We believe that there is potential in building image mosaics from the best picture se-
lected by our system and other images processed during the interactive aiming phase.
Mosaics could add significant contextual information to the selected best image, which
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may be useful in a documentation context. This feature, however, would require exten-
sion of the final image display phase, because composing the mosaic would likely take
some time given computational limitations on phones. We would also need to address
“ghosts” (i.e., elements that do not appear in the same position in all pictures used for
the mosaic) and manage holes in the composition. The latter are parts of the mosaic
that are empty, because no image covers these spatial regions.

Another way of making our system better would be to continue processing a few
additional frames when the ROI is centered in the middle of the composition. This
would allow the system to pick as best image a picture that was captured after the ROI
was centered, not only before. The hope is that one of these extra images would have a
similar composition to the one where the ROI was centered but would be significantly
less blurred.

7. CONCLUSION

We presented an assisted photography framework aimed at helping people with vi-
sual impairments take pictures and described our implementation in the context of
documenting accessibility barriers related to public transportation. Our results in this
context reinforce earlier work suggesting that users who are blind or have low vision
find assisted photography appealing and useful. Furthermore, it appears that there
is overall acceptance of assisted photography, including users with full vision, due to
positive usefulness ratings collected during our study.

Full vision participants seemed to find value in silent feedback mode, thereby sug-
gesting that our assisted photography framework has universal appeal. However, it is
clear that the interface of such a system may need to change when the user is blind
or has low vision. The iOS5 camera application’s altered behavior when VoiceOver is
turned on is a good example of how this can be achieved.

Since our evaluation of the framework was focused on our particular implementation
for the documentation scenario, more systematic evaluations are needed to verify its
effectiveness in other settings. For example, the framework could be used to help users
capture better images for optical character recognition or object labeling, which benefit
from good image compositions. These systems would naturally require appropriate
image quality evaluation mechanisms and corresponding user feedback modes.

We foresee multiple opportunities for assisted photography to become mainstream,
especially as computer vision improves and processing power becomes cheaper and
more accessible. In our opinion, the key to success with these systems is providing
real-time feedback to users so that they can take better pictures in situ. It is also
essential to acknowledge that users may have different preferences for how they want
the system to behave. Therefore, it is important to provide a variety of options and
features that users can decide to use when taking a picture based on their current
needs. We believe that our proposed framework supports this general class of assisted
photography systems.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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