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Abstract—Human-robot non-verbal communication has been
a growing focus of research, as we realize its importance
to achieve interaction goals (e.g. modulating turn-taking) and
manage human perception of the interaction. Consequently, the
development of models for robot non-verbal behavior, such as
gaze, should be informed by studies of human reaction and
perception to that behavior. Here, we look at data from two
studies where two humans interact describing words to a robot.
The robot tries to balance participation of the two players
through a combination of gaze aversion, looking at the listener
and looking at the speaker. We analyze how momentary gaze
patterns reflect in the participant’s turn length and perception of
the robot, as well as in the participation imbalance. Our findings
may be used as recommendations towards crafting robot gaze
behaviors in multiparty interactions.

Index Terms—multiparty interaction, gaze, non-verbal behav-
ior,social robotics

I. INTRODUCTION

Non-verbal communication is an important component of
social interactions [1]. In particular, eye gaze has been ex-
tensively studied in human-human communication and is an
emerging topic in Human-Robot Interaction (HRI) [2].

In human interactions, gaze direction and timing can skew
the perception of interactants [3]. Gaze can additionally regu-
late conversational dynamics. For instance, gaze aversion – the
act of temporarily looking away from an interactant’s face –
plays a role in modulating intimacy [4], signaling of cognitive
effort [3] and managing turn-taking [5].

Previous literature has provided evidence that robot and hu-
man gaze behaviors elicit different responses from people [6].
Further, Yu et al. [7] reported that humans spent on average
less time looking at the face of the other interactant if they are
human than if they are an artificial agent. These differences
motivate studies that provide an adequate characterization of
human response to robot’s gaze.

In HRI, recent work has explored how gaze can help balance
participation in multiparty interactions [8, 9, 10]. In [9, 10],
two human participants interacted with a Furhat robot in a
word guessing game. Figure 1 illustrates the collaborative
setting, where the two human participants take turns. At
a given time, one human is the speaker, the other is an
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Fig. 1: Overview of the scenario. The robot Furhat is looking
at the participant on the right.

active listener, and the robot is the addressee of both. The
robot tries to balance participation of the two players through
different gaze policies combining the behaviors of looking
at the speaker, looking at the listener and averting gaze.
The authors found that participation unevenness [11], number
of turns taken and amount of active participation vary as a
function of the gaze conditions tested for the robot.

While the results from [9, 10] are encouraging, they provide
a macro-level analysis of the effect of gaze patterns on
the quality of the interaction. In contrast, the present work
investigates the effect of different gaze behaviors on the human
participants on a more fine-grained level.

This paper aims to shed light on which momentary robot
behaviors influence human conversational patterns and percep-
tion of a robot. Using the data from [9, 10], we find evidence
that specific gaze behaviors, but also the effect of combining
different behaviors, play a role in shaping the length of in-
terventions, participation imbalance and human impression of
the robot. From this analysis, we formulate recommendations
for crafting robot gaze behaviors in multiparty interactions and
different interaction goals, such as modulating turn length and
human perception of the interaction.

II. RELATED WORK

Substantial amount of research has studied human-robot
non-verbal communication, in particular gaze behavior [2]. For
example, prior work studied the gaze patterns exhibited by the
speaker (human or robot) and how these effect conversational
dynamics and roles [3, 12]. For multiparty interactions, Wang
et al. [13] evaluated human perception of the actions taken by a
virtual agent acting as a listener. Oertel et al. [14] characterized
and built a model of attentive listener gaze behavior in a robot.
Three-party human interaction gazes are analyzed in [15] and



used to develop gaze models in a humanoid robot. Whereas
these studies characterize human response to gaze to inform
the modeling of robot gaze behavior, we evaluate micro-level
dynamics that emerge from the use of such models.

Previous work has investigated human impression of in-
teractants according to their gaze behaviors. In HRI, gaze
patterns can modulate human impression of the interaction
[16]. Virtual agents and robots exhibiting higher amounts of
mutual gaze have been found to be more effective at building
rapport with humans [17, 18]. However, the timing of gaze
behavior is important, as longer durations of mutual gaze can
have a negative social effect [18]. Andrist and colleagues [19]
showed that robot gaze aversions can be used to manage the
conversational floor and improve human perception of robots.
Closer to our work, a pilot study compared the gaze aversion
ratio (GAR) – ratio of time gazing away from the interaction
partner to the gaze cycle time – with a user’s interaction
experience [20]. Results indicated that a small GAR has a
negative effect on the perception of the interaction.

In order to assess the implications of robot gaze patterns in
conversational dynamics and human perception of the robot,
we conduct our analysis with data from two studies [9, 10]
that use different combinations of gaze behaviors from a robot
to attempt to balance participation of two human subjects. The
authors find evidence that, through the robot’s gaze behavior,
it is possible to regulate participation unevenness, number of
turns taken and active participation.

III. METHODOLOGY

This work aims to examine human response to gaze patterns
from a robot, and how these gaze patterns influence human
impression of the robot. To this end, we analyze the data from
two in-between subject studies [9, 10].

A. Dataset

In the studies from [9, 10], two human participants with dif-
ferent proficiency levels of Swedish (one native, one learner)
interact with a Furhat robot while playing a variant of the
game With Other Words [9] in Swedish. In the game, the
human players describe words which the robot tries to guess.
This experimental setting encourages participants to collab-
orate, establishing a dynamic of turn-taking. These studies
provided evidence that robot gaze can help in balancing human
participation in the game.

The studies include four different conditions which vary the
gaze behavior of the robot. In the Heuristic Condition 1 (HC1,
originally control in [9]), the robot only looks at the active
speaker and performs gaze aversion. Heuristic Condition 2
(HC2, originally experimental condition in [9]) tested the ef-
fect of a hand-crafted heuristic behavior, where the robot looks
at the speaker or the listener, but never performs gaze aversion.
In the Learning Condition 1 (LC1) and Learning Condition 2
(LC2), interaction data from the previous study [9] was used
to train a gaze policy for Furhat via imitation learning (LC1,
originally IL in [10]) and via batch reinforcement learning
(LC2, originally RL in [10]). The learned gaze policies include

Fig. 2: Schematic view of gaze behaviors and measures
considered. Furhat represented with F .

three types of behaviors: look at speaker, look at listener, and
perform gaze aversion.

The dataset used for this study comprises 51 interaction
episodes collected in the four different conditions (15 HC1,
12 HC2, 12 LC1, 12 LC2) with 15-20 min of length, in a total
of 6014 conversational turns. Available data from the studies
includes: video footage, action commands sent to the robot,
participants’ voice activation as well as game information.
The dataset further provides participants’ perception of the
interaction from a post-interaction questionnaire.

A total of 102 participants are included across [9, 10], with
ages between 67 and 18 (M = 30, SD = 11). In terms of
gender, there were 50 female, 50 male and 2 people who rather
not say. Also, 58 participants reported not having interacted
with a robot before while 44 did, and a total of 22 participants
reported having contact with robots at work.

B. Research Questions

We set to answer the following research questions:
RQ1 How is the turn length, i.e. the time one participant is

holding the floor, affected by the robots gaze behaviors (look
at speaker/listener, perform gaze aversion)?
Because [9] found that gaze behaviors could balance par-

ticipation, we also wanted to investigate:
RQ2 To what extent is participation unevenness influenced by

the precise robot gaze behaviors?
Lastly, because different gaze behaviors have different sig-

naling functions[3], we explored:
RQ3 Is human impression of the robot (discomfort, warmth)

modulated by the robot’s gaze behaviors?

C. Data Preparation

We analyze participants’ interventions during the interaction
with data collected from the Voice Activation Detection (VAD)
method used in [9, 10]. We make the following assumptions:
any robot action command that led to action durations smaller
than 0.5 seconds was considered as not executed by the Furhat
robot and is therefore not used for the analysis; likewise, any
participant intervention shorter than 0.5 seconds is considered
backchannelling and not a conversational turn.



D. Measures

To analyze the effects of the robot’s gaze behaviors at a
fine granular level, we study how momentary gaze behavior
patterns demonstrated by Furhat reflect on human behavior
(i.e. holding the floor and participation behavior) and percep-
tion of the robot (in terms of warmth and discomfort). We
characterize the distribution of robot behaviors taking into
account the relative time performing gaze aversion (GA),
relative time looking at the speaker (S), and relative time
looking at the listener (L).

We compute the distributions of the robot’s gaze behaviors
within different horizons of the interactions. We consider the
distribution of behaviors in each turn t, but we also evaluate
the collective effect of robot gaze patterns across several turns.
For this, we divide each interaction (M = 957s, SD = 30s)
into three interaction phases p, each comprising of 300s
(the last phase varies in length). We look at GAp, Sp and
Lp, where the cumulative time performing each behavior per
phase is normalized to the length of the phase. Note that the
speaker changes during the phases. These measures therefore
describe the general robot behavior towards the interacting
dyad. Finally, we compute Si

p and Li
p, which can be defined,

respectively, as the cumulative time participant i is looked
at by the robot while speaking/listening, normalized to the
length of the phase. As opposed to GAp, Sp and Lp, these
two participant-centric measures allow us to extract the robot’s
behaviors as directed to the individual participant during one
phase (Fig. 2). We evaluate how these distributions affect:

1) Turn length (s): for each turn t, we consider GAt, St

and Lt, where the cumulative time performing each behavior
is normalized to the duration of that turn.

2) Participation unevenness [11]: for each phase p, is
defined by:

unevenp =
∑

i∈[1,2]

|spi − sp| (1)

where spi is the amount of time that participant i has spoken
over the total amount of speech of the two human players.
sp represents to the mean of the relative speech time of the
players. In this case, sp = 1

2

∑
i∈[1,2] spi.

3) Perception of the robot: we measure impressions of the
robot by analyzing the Discomfort and Warmth scale from
the Robotic Social Attributes Scale (RoSAS) [21]. Note that
the dataset only provides perceptions of the robot for a subset
of the data (LC1 and LC2). We compare these impressions
with GAp, Sp and Lp, Si

p and Li
p.

Finally, we consider self-reported extroversion and pro-
ficiency of the language learner, as these are expected to
influence the behavior of the participants in the task of playing
the language game [9, 10].

IV. RESULTS

A. Length of turns

We analyzed the effect of GAt, Lt, St and the Condition on
the Length of the Turn through a four-way ANCOVA while
controlling for the Proficiency of the language learner and

TABLE I: Analysis of deviance table for turn length, a double
dot indicates the interaction between the factors. *p < 0.05,
**p < 0.01, ***p < 0.001

Chisq Df Pr(>Chisq)
extroversion 4.03 1 0.044 *
proficiency 5.33 4 0.255
condition 13.11 3 0.004 **
St 67.87 1 <2.2e-16 ***
GAt 35.80 1 2.182e-09 ***
Lt 0.09 1 0.763
St:GAt 374.58 1 <2.2e-16 ***
St:Lt 254.04 1 <2.2e-16 ***
GAt:Lt 9.33 1 0.002 **
St:GAt:Lt 24.53 1 7.320e-07 ***
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Fig. 3: The effect of increasing St (top to bottom, large grids)
and GAt (top to bottom, small grids) on turn length.

Extroversion. The analysis showed a main effect of Condition,
GAt and St on the turn length. The covariate Extroversion
was significantly related to the turn length. The summary of
the results can be found in Table I. Fig. 3 illustrates how
turn length varies according to GAt and St. Increasing the
time spent looking at the speaker (St) to a high to moderate
amount gives rise to longer turns, but very high amounts of
gaze aversion (GAt) (> 0.45) will shorten turns.

B. Participation unevenness

We analyzed the effect of GAp, Lp, Sp, the Condition and the
Interaction Phase on the Unevenness in participation through
a five-way ANCOVA while controlling for the Proficiency of
the language learner. The analysis showed a main effect of Sp
on participation Unevenness, F (1, 137) = 4.433, p = 0.037,
indicating that the more the robot focused on gazing to the
speaker, the higher the imbalance. Further, we found a trend
to significance for Lp (F (1, 137) = 3.051, p = 0.082) and
Condition (F (3, 137) = 2.155, p = 0.096). The covariate
Proficiency was significantly related to the participation un-
evenness.
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Fig. 4: The effect of increasing Si
p (top to bottom, large grids)

and increasing Li
p (top to bottom, small grids) on reported

discomfort.

C. Robot perception

1) Discomfort: We analyzed the effect of GAp, Lp, Sp, Si
p,

Li
p, the Condition and the Interaction Phase on the perceived

Discomfort through a five-way ANCOVA while controlling for
the Proficiency of the language learner and Extroversion. The
analysis showed a main effect of Sip, F (1, 104) = 4.020, p =
0.048, and Li

p, F (1, 104) = 4.442, p = 0.037, on perceived
discomfort. It indicates that discomfort increases the more time
the robot spends gazing at the person while they are speaking
and decreases the more the robot looks at the person while
they are listening. Further, we found significant interactions
between Sip and Li

p (F (1, 104) = 4.238, p = 0.042), Sip and
Sp (F (1, 104) = 4.068, p = 0.046), Li

p and Sp (F (1, 104) =
4.174, p = 0.044), as well as Sip, Li

p and Sp (F (1, 104) =
4.278, p = 0.041). Figure 4 shows how Li

p and Sip interact
according to reported discomfort. For lower levels of Si

p (top
large grid), reported discomfort is low, but it increases if the
robot is looking more at the listener while the participant is
talking (higher Li

p, dark blue). A reverse effect can be observed
for higher levels of Si

p (bottom large grid), where higher Li
p

actually lowers reported discomfort.
2) Warmth: We analyzed the effect of GAp, Lp, Sp, Sip, Li

p,
Condition and Interaction Phase on perceived Warmth through
a five-way ANCOVA while controlling for Proficiency of the
language learner and Extroversion. No significant main effects
were found on Warmth. Proficiency was significantly related
to Warmth, F (4, 104) = 12.353, p < 0.001.

V. DISCUSSION

Our results suggest that important aspects of conversational
dynamics can be predicted by a combination of the robot’s
gaze behaviors. Longer turns by human participants are as-
sociated with more time being looked at by the robot while
speaking. This may be explained by perceived attentiveness of
the robot [3]. When analyzing the interaction of St and GAt,

longer turns seem to emerge when a high proportion of the
time is spent with the robot looking at the speaker combined
with moderate gaze aversion (< 0.45).

Interestingly, interactions where the robot looks more at the
speaker appear to be more imbalanced in terms of human
participation. These results are consistent in that longer turns
may provide fewer opportunities to balance participation. The
aforementioned effects of the distribution of gaze behaviors
in conversational dynamics are an interesting finding which
may be used to inform the development of robot non-verbal
behavior models.

We also find that human impression of the robot appears
to be related to the distribution of the robot’s gaze behavior.
Reported discomfort increases if the participant is looked at
more while speaking. This is in line with prior work that
found that maximizing mutual attentiveness can have negative
social effects [17]. Figure 4 considers the interaction between
time being looked at while speaking (Si

p) with the time being
looked at while listening. We note that higher discomfort is
associated with higher Si

p. The lowest discomfort was obtained
when both Si

p and Li
p are moderate to low, which may indicate

that Furhat’s gaze on the participant may lead to a higher
feeling of uneasiness. In sum, there is a contrasting trend: more
time attending to the speaker leads to longer turns, but more
imbalanced participation and discomfort. This trend should be
taken into account when implementing robot gaze behavior.

A. Limitations

In this work, we analyzed human response to robot gaze
patterns. However, non-verbal communication is a complex
problem, even in the controlled, experimental setting used in
[9, 10]. We made the assumption the participants were always
looking at the robot. In reality, participants interact with the
robot and among themselves. First insights into participant’s
reaction in terms of their non-verbal behavior in [9] were
discussed by Weldon et al. [22]. Additionally, we do not
analyze head position and movements, which have been shown
to be important in turn management [23, 24].

VI. CONCLUSION

This work evaluates how momentary robot gaze patterns in
a multiparty interaction reflect in the participant’s turn length
and perception of the robot, as well as in the interaction
imbalance. When crafting gaze behaviors, these findings may
be taken into account according to the goal of the interac-
tion. If the goal is to elicit longer interventions from the
human interactants, more time looking at the speaker may
be a contribution factor. In contrast, this guideline may be
counterproductive if the goal is to create interactions which
are ranked positively for human impression, since a longer
time being looked at while speaking leads to more reports of
discomfort. Likewise, if the aim is to balance participation,
gazing a lot at the speaker is unadvised. More studies of
this kind in different interaction settings will be important to
provide generalizable insights into human reaction to robot
gaze.
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