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ABSTRACT
We describe a behavioral navigation approach that leverages the
rich semantic structure of human environments to enable robots to
navigate without an explicit geometric representation of the world.
Based on this approach, we then present our efforts to allow robots
to follow navigation instructions in natural language. With our
proof-of-concept implementation, we were able to translate natural
language navigation commands into a sequence of behaviors that
could then be executed by a robot to reach a desired goal.
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1 INTRODUCTION
Currently, most popular approaches for robot navigation rely on
precise, geometric world representations, e.g., metric maps [7].
While these representations have proven successful on a variety of
applications, there are situations where sensor occlusion or noise
can affect precise localization, which is essential for these popu-
lar approaches. Interestingly, we, humans, often navigate indoor
environments without precise geometric information. We do not
tend to keep track of our exact (x ,y) coordinates on the ground
when moving to new locations. This observation inspired us to
think about robot navigation without metric world representations,
and to revisit the idea of graph-based cognitive maps [3].

The approach that we are exploring takes advantage of the rich
semantic structure behind man-made environments, which are
intrinsically designed to facilitate human navigation. These envi-
ronments are mainly composed of navigational structures, such as
corridors, or stairs, that in turn are intended to connect meaningful
neighboring places, such as rooms, or halls. Our hypothesis is that
by providing robots with suitable abilities to understand the world
at this semantic level, it is possible to provide them with naviga-
tional systems that can exceed the generality and robustness of
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current methods. Moreover, these abilities can facilitate navigation
under human commands, because humans understand and describe
their environments at this level of abstraction.

The following section describes our behavioral approach for in-
door navigation, which first appeared in [6]. Based on this approach,
we present our current efforts to enable robots to follow naviga-
tion instructions in natural language. We conclude by discussing
avenues for future research, especially in human-robot interaction.

2 BEHAVIORAL NAVIGATION APPROACH
The proposed robot navigation approach [6] revisits the ideas of
behavioral robot control [1] and early topological map representa-
tions [3]. While early attempts at behavioral navigation lacked of
sufficient robustness to deal with the complexities of natural envi-
ronments, we can now exploit recent advances in Deep Imitation
Learning to learn motion behaviors [2]. In our approach, complex
navigation routes can be achieved by composing simple, parameter-
ized visuo-motor behaviors that leverage the semantic structure of
indoor environments. This composition is realized by planning on
a directed graph that represents valid relations among navigational
structures, as illustrated in Fig. 1b for the layout in Fig. 1a. The
nodes of the graph correspond to semantically-meaningful places,
such as offices or corridors. The edges correspond to visuo-motor
navigation behaviors that the robot counts with to move from one
place to another, such as “follow the corridor" or “leave (the office)
and <turn right, turn left, go straight>" to enter a hall.

3 FOLLOWING NAVIGATION INSTRUCTIONS
Inspired by prior work [4, 5], we cast the problem of following
navigation instructions in natural language as amachine translation
task. We want to translate natural language commands, such as
“go out of the office and enter the conference room on the left",
into a graph representation that encodes navigational structures
and behaviors as described previously. The robot can then execute
the visuo-motor behaviors along the route in the graph to reach a
desired destination. Note that this approach differs from [5] in that
we do not output low-level motion commands directly, but estimate
a behavioral graph that can facilitate reasoning at a semantic level
of abstraction. This graph can be considered a topological map [3]
but, different to [4], it does not encode metric information explicitly.

3.1 Translating Natural Language Commands
As illustrated in Fig. 1c, we pose the translation problem as estimat-
ing a function f that maps navigation commands to a sequence:
S =< p1,b1,R1,p2,b2,R2, ...,pn > of places p, behaviors b, and se-
quences of references R. The places are semantically-meaningful
locations, like offices, halls, or kitchens in the route. The behav-
iors correspond to motion policies that the robot can execute to
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Figure 1: (a) Environment, (b) partial graph representation for behavioral navigation, and (c) implementation of the translation
task. The desired route is highlighted in red in (a) and (b). The codes “or”, “cf”, “cs”, “tl”, “er”, and “el” correspond to the
behaviors “go out and turn right”, “follow the corridor”, “cross straight”, “turn left”, “enter on the right”, and “enter on the
left”, respectively. The reference actions “pol” and “por” correspond to “pass on the left” and “pass on the right”.

transition between places in S . Finally, the sequences of references
R =< “(”, l1, r1, l2, r2, ..., “)” > are ordered collections of zero or
more reference actions r grounded on landmarks l . These refer-
ences guide the execution of the prior behavior b in S by providing
complementary information about the route. The landmarks corre-
spond to distinguishable places or objects. For example, a reference
action could be “pass a door on the right” while following a corridor.

As an initial proof of concept, we implement the function f as
a differentiable sequence-to-sequence deep learning model with
attention [8]. The places in the output sequence correspond to the
nodes in the graph, and the behaviors correspond to the edges. We
encode the references actions as attributes of the edges of the graph,
such that they can guide behavior execution.

Implementation Details. We trained the function f using an
adaptation of the learning environment DeepMind Lab.1 We used
one-hot encodings for the input and output sequences (the vo-
cabularies had 45 and 31 codes, respectively). For the encoder and
decoder of f , we used single layers of Gated Recurrent Units (GRUs).
Training was performed with the Adam optimizer, 0.001 as learning
rate, cross-entropy loss, and a batch size of 128. At test time, we
output the predicted sequence with the highest probability among
a finite set generated through beam search.

Experiment.We evaluated our approach on a dataset of 16, 370
unique examples using 5-fold cross-validation. This dataset was
created by sampling routes of varied length on 250 synthetic envi-
ronments. For each route, we generated example natural language
instructions by composing simple path descriptions, and created
graph representations to encode relevant navigational structures.
The target sequences S in the dataset were composed of 40.18
elements on average (STD = 9.75). As in Fig. 1c, we considered
situations where the robot had to follow a corridor while passing
references, but the “follow the corridor” action was not said explic-
itly in the instructions. This consideration increased the diversity
of commands, and forced the model to learn to complete output
sequences to successfully generate behavioral graphs.

Because the output graph could not be used to navigate unless
it was structured correctly, we report a strict measure of accuracy:
a prediction was valid if it matched the ground truth exactly. Our
results are presented in Table 1, based on the number of GRU units in

1https://github.com/deepmind/lab

Table 1: Accuracy of our model on the testing set.

# GRU Units Avg. Accuracy Std. Dev.
64 99.53% 0.01
128 99.99% 0.0002
256 99.99% 0.0002

our model. Overall, our translation function reached high average
accuracy (above 99%). With less than 32 units, we observed the
performance drop significantly and learning often became unstable.

4 DISCUSSION & FUTUREWORK
We described an approach for indoor navigation that leverages the
semantic structure of man-made environments. In our current work,
we are taking advantage of the affinity between the behavioral
graph at the core of this approach and the way humans navigate to
enable robots to follow navigation instructions in natural language.
Usingmodernmachine translationmethods wewere able to convert
instructions to sequences of behaviors that a robot could execute to
reach a desired goal. In future work, we plan to consider free-form
route instructions and investigate mechanisms to detect erroneous
or ambiguous directions in known environments. This ability could
improve users’ perception of the robot and their interaction.
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